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No Profitable One-Shot Deviation Property

Dynamic programming gives us two results about one-stage deviations. In a finite-

horizon game, we have the following result.

Theorem 1 (Finite-Game One-Stage-Deviation Principle). Let I' be a finite-horizon
multi-stage game with perfect information. s is a SPNE of I' if, and only if: there is
no player i and strategy s, that agrees with s; except at a single history h, such that:

5;|h is a strictly better response to s_;y, than sy,

Proof sketch: the nontrivial direction is to construct a one-shot deviation from a
deviation in multiple stages. We take a deviation s; and consider the longest history
ht at which the two strategies 5;, s; differ for the first stage, to construct a one-shot
deviation from the equilibrium strategy s;.

Note that the No Profitable One-Shot Deviation Property is necessary for SPNE,
but not for NE. In an infinite-horizon game, we have a similar result, assuming a

continuity property of payoffs.

Definition 1. In an infinite-horizon multi-stage game, we say that payoffs are contin-

wous at infinity if:

sup lu;(h) —u;(h)| — 0 as k — oo.
h,h/eHT s.t. hk=h'k
Payoffs are continuous at infinity whenever: (i) every player i’s payoff is the dis-

counted sum of per-period payoffs, and (ii) per-period payoffs are uniformly bounded.

Theorem 2 (Infinite-Horizon-Game One-Stage-Deviation Principle). Let " be an infinite-
horizon multi-stage game with perfect information with payoffs continuous at infinity.
s is a SPNE if, and only if: there is no player i and strategy s that agrees with s;

except at a single history h, such that: sg‘h is a strictly better response to s_;, than

5i|h'

Proof sketch: the nontrivial direction is to construct a one-shot deviation from a

deviation in multiple stages, possibly infinitely many. First, we prove that if s; is a
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deviation in infinitely many stages, there must be a finite deviation by continuity at
infinity. Second, we observe that the finite-game one-stage-deviation principle estab-
lishes that: if a strategy profile has the no profitable one-shot deviation property, it is
not improvable by finitely many deviations.

The results collected in this handout apply to repeated games in which: (i) the
stage game is a simultaneous-move game, and (ii) all past actions are observable. These
results are collected in the slide deck on repeated games, with slightly different presen-
tation.

The next result shows that the set of equilibrium payoff vectors weakly expands

when a game is repeated.

Theorem 3. If a is a NE of the stage game of a repeated game I', the strateqy profile
s, where s; equals a; at every history, for every player i, is a SPNE of the repeated

game I'.

Proof Sketch. Note that the future actions of —¢ is independent of player i’s current
action.

Let’s define minmax values and individual rationality. For a given stage game —
of a repeated game —, we use A; for the set of mixed actions of player ¢, and A for
the set of pure action profiles, and g; : xj€{17.__,N}Aj — R as the per-period expected
payoff to player 1.

Definition 2. For a given repeated game with observable actions:

(A) Player i’s minmaz value v; is:

y=, S | max gi(@i, a—).

(B) A payoff profile v is Individually Rational (IR) if: v; > v,, for all i; A payoff vector
v is strictly Individually Rational (strictly IR) if: v; > v;, for all i.

(C) The set of feasible average payoff profiles is:

V= {v € RV : there exists ((tg)aca € Q'fl s.t. v; = Z aqgi(a) for all i, and Z Oy = 1} .
a€A acA

Infinitely Repeated Games

The next results are valid for an infinitely repeated game with discounted payoffs:
G*(0), 6 € [0,1]. In particular, players maximize the discounted average stage-game

payoff. First, NE payoffs are individually rational (IR).



Theorem 4 (Individual Rationality of Nash Equilibria). If v is the payoff profile of a
NE of G*(9), then v is IR.

Proof sketch: Player i can use the myopic strategy that prescribes: for each period
t, to play a best response to the mixed action of the opponents at t.
Second, the Folk Theorem for NE.

Theorem 5 (Nash Folk Theorem). Let v be a strictly IR feasible average payoff profile
of G=(0). There exists a discount factor 6 € [0,1) such that: for all § € (9,1), there
exists a NE of G™(6) with payoffs v.

Proof sketch: for simplicity, assume that a pure action profile of the stage game
exists such that v is the payoff profile. Use grim-trigger strategies: A grim-trigger
strategy profile s is a profile of strategies such that any deviation triggers reversion to
NE play (hence trigger) and the NE minmaxes the players’ payoffs (hence grim).

Folk Theorem for SPNE:

Theorem 6 (Fudenberg-Maskin (1986) Perfect Folk Theorem). Let v be a strictly IR
feasible average payoff profile of G*°(0), and suppose that the dimension of V is equal
to the number of players. There exists a discount factor § € [0,1) such that: for all
d € (4,1), there exists a SPNE of G™(§) with payoffs v.

Proof sketch: for simplicity, assume that a pure action profile of the stage game
exists such that v is the payoff profile. Use reconciliation phase after a minimax pun-
ishment phase, in order to reward punishers. The full-dimension condition is needed to
construct strategies that reward players in —¢, without rewarding the deviator player

1.

Finitely Repeated Games

The next results are valid for a finitely repeated game with discounted payoffs: G7(§),
T €N, ¢ € [0,1]. In particular, players maximize the discounted average stage-game
payoff. The first two results are observations about a game G (§) with a unique stage-
game NE. In particular, SPNE offers a sharp prediction — unique SPNE —, while NE

does so only in particular cases — such as in the Prisoner’s Dilemma (PD).

Theorem 7 (NE when the stage game has a unique NE). 1. If s is a NE of the
finitely repeated PD, (d,d) is the only action profile that is played on the path
of the play according to s, for every 6 € [0, 1].



2. There exists a finitely repeated game GT (8) with a unique stage-game NE a* such
that: a # a* is played on the path of a NE of GT(6).

Proof Sketch: induction on the length of terminal histories with positive probability
for the first part. Intuition for the second part: PD has minimax payoffs in the unique
NE, so one needs to allow the NE to have larger payoffs (v) than minimax (v), in order
to use minimax as off-path “grim” punishment. In this way, a deviator ¢’s continuation
play is some average of v,’s, while the equilibrium play implies some average of v;, for
periods close to T' (by backward induction). See the Extra section for my complete
proof.

The first part holds more generally. Suppose players have a unique dominant action

in the stage game...

Theorem 8 (SPNE when the stage game has a unique NE). If a* is the unique NE of
the stage game of GT(5), and s* is a SPNE of GT(§), then: s¥ is equal to a¥ at every

history, for every player i.

Proof sketch: backward induction.
The next result is related to two-player games when the stage game has multiple

NE’s, ordered differently between players.

Theorem 9 (Benoit-Krishna, 1985). Suppose the game G (8) has two players. Let v’
and v" be stage-game NE payoffs with v; < v’ and v] < vj. For all v in the feasible
average payoff set and greater than or equal to any convexr combination of v\ and v”,
and sufficiently small ¢ > 0, there exists a T such that: GT' (1) has a SPNE with
(average) payoffs within € of v, for all finite horizons T' > T.

Proof Sketch. For simplicity, assume that a pure action profile a of the stage
game exists such that v is the payoff profile. Play a until a sufficiently large cutoff
period, after which players alternate between the two NE’s. Use the deviator-worst NE
as punishment. A sufficiently large cutoff period ensures that the SPNE payoffs are
within e of v, if the horizon T” is large.

The Benoit-Krishna result holds with more players, assuming a full-dimension con-
dition on V. Note that the Benoit-Krishna result extends Nash and perfect folk theo-

rems to a class of finitely repeated games.

Extra

The next result shows that the set of NE continuation payoff vectors is the same in

every proper subgame.



Theorem 10. Let’s fix two proper subgames of a repeated game with observable actions,
[|p, and T|p,. There exists a one-to-one correspondence between the spaces of strategy

profiles, in T'|p, and in T'|p,, that preserves the payoff to every player.

Proof: See Exercise 5.3 in Fudenberg and Tirole for a hint of the isomorphism.

We prove Theorem 7 (I came up with the following counterexample for part 2.,
while most textbooks contain a version of the proof of part 1.). First, we prove 1.
We use defect and cooperate as the per-period actions available to each player in the

Prisoner’s Dilemma.

Proof. Let’s show that, if terminal history h € HT has positive probability under the
NE o, then o(h) = (d,d). If o; puts positive probability on ¢, then player i has a
strictly profitable deviation: mimick o; except at h, where 7 plays d. Note that the
deviation is profitable because it puts positive probability on h, by the assumption on
.

Let’s show that, if history h € H is such that (h,a) € H', a € A, and has positive
probability under the NE o, then o(h) = (d,d). Suppose o;(h)(c) > 0, i.e. o; puts
positive probability on ¢, and let’s construct a strictly profitable deviation to o;, given
o_i, which we call . ¢ mimicks o;, except that he plays d at h. Player i’s T — 1
payoff is strictly larger under o}, given o_;, than uder o;. At period T, player i’s
payoff depends on her opponent’s off-path play, and there are only two possibilities.
(1) If o_i(h, (c,0-i(h))) = d, player i gets the same payoff at period T under o, given
o_i, than uder o;. (2) If 0_;(h,(c,0-;(h))) = ¢, player i gets a strictly larger payoff
at period T under o}, given o_;, than uder ;. In each case, the deviation is strictly
profitable. Thus, o is not a NE.

An induction argument completes the proof. O

The next example is used to prove part 2. of the result about NE when the stage

game has a unique NE. Let b > a > 1. G is the following game.

Cy D,
Ci | —a,1 | —1,2
Dy | —=b,—1| 0,0

Intuition. Prisoner’s dilemma has minimax payoffs as the unique NE payoff profile. We
modify prisoner’s dilemma to make a player’s minimax payoff lower than NE payoff.
Say for player ¢, v, is less than NE payoff in the unique NE. Then we can construct
strategies sustaining a non-NE action profiles where: off-path player —i punishes player

1 by forcing ¢’s minimax payoff.



We prove part 2 using the next claim.
Claim A NE of G?(1) exists such that: the non-NE action profile (C1, Do) is played
on-path.

Proof. Consider the following strategy profile s. C, D1 for player 1, and: D5 if h = ¢,
Dy if h = C1, Dy, Cy otherwise. Note that s; is not history contingent at period 2,
and note that we can’t use one-shot deviation arguments. Let’s consider deviations by
player 2. She does not have period-2 deviations. If player 2 plays Cs in period 1, she
gets weakly less than 1 in the overall game, while her equilibrium payoff is 2.

Let’s consider deviations by player 1. She does not have period-2 deviations. If
she plays D; in period 1, she gets weakly less than —a in the overall game, while her

equilibrium payoff is —1. Therefore, s is a NE of G2(1). O

[Why is s not a SPNE? Let’s observe that the “grim” punishment is not a credible
threat to deter 1 from playing D;. Under s: If player 1 deviates to D; (for a period-1
gain of a to 1), player 2 should punish her by playing Co and force the period-2 play
to be C1, Cy, which minimaxes player 1’s payoff (for a period-2 loss of a to 1). Thus,
using “grim” punishment by 2, we sustain the non-NE profile in period 1. However,
after 1’s deviation — i.e., at history D1, Ds —, 2 does not find it profitable to play Cs
— actually, D, is strictly dominant for 2 in the stage game! s is not an equilibrium in
the subgame that starts at D, Ds.]
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