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Coordination & Complexity

Coordination motives and uncertainty are common in innovative
contexts.

Examples:
1. Interoperability of Electronic Medical Record Systems (Lin ’23),
2. Co-Op advertising (Jørgensen-Zaccour ’14),
3. Technological innovation.

This paper introduces a model of coordination in an
informationally complex environment.
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Overview

Complexity: the more innovative a decision, the more uncertain its
outcome (Callander ’11).

Do coordination motives lead to innovation? Does complexity amplify
network influence?

Contributions:

(1) A model of coordination in complex environments;

(2) New conformity phenomenon;

(3) Source of conformity: correlation between the outcomes of the
decisions of different players.

(4) Applications:
1. Oligopoly pricing;
2. Multi-Division organization.
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Model

n players.

xi ∈ R is player i’s outcome.

Payoff to player i from the profile of outcomes x is:

πi(x) = −
[

(1− α)δi + α
∑
j 6=i

γijxj︸ ︷︷ ︸
i’s target

−xi
]2
,

in which
α ≥ 0 captures coordination motives,
δi ∈ R is i’s favorite outcome,
γij ≥ 0 weighs the link from j to i.

[Ballaster et al. ’06]
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Model | Complexity

Players simultaneously choose policies from [p, p] ⊂ R.

The outcome function χ maps every policy pi to the corresponding
outcome χ(pi),

χ : R → R.

χ is the realization of a Brownian motion with known:
I Drift µ < 0,
I Variance σ2,
I Initial point (p0, χ(p0)).
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Model | Complexity

p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

χ

policy (pi)

outcome
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Model | Complexity

p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

Status quo:

(p0, χ(p0)).
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Model | Complexity

p0
q

r

χ(p0)

policy (pi)

outcome

density

Complexity:

k = σ2

2|µ| .

Details
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Equilibrium

1. Players simultaneously choose policies p1, . . . , pn.
2. Player i gets the payoff from the profile of corresponding outcomes:

πi(χ(p1), . . . , χ(pn)).

The policy profile p is an equilibrium if, for every player i:

Eπi(χ(p)) ≥ Eπi(χ(qi),χ(p−i)) for all policies qi.
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Network

1 2

3

γ12

γ21
γ23

γ31

Γ = (γij) =

 0 γ12 0
γ21 0 γ23

γ31 0 0


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Upper bound on strength of coordination motives:

αλ(Γ) < 1,

in which λ(Γ) is the largest eigenvalue of the adjacency matrix.
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Network

1 2

3

1

11
Γ =

0 1 1
1 0 1
1 1 0



Upper bound on strength of coordination motives:

αλ(Γ) < 1,

in which λ(Γ) is the largest eigenvalue of the adjacency matrix.

For this talk: γij = γji, and:
1. p = p0,
2. p and χ(p0) are sufficiently large.
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No Complexity

The centrality of player i is the ith entry of:

β = (1− α)(I − αΓ)−1δ.
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No Complexity

The centrality of player i is the ith entry of:

β = (1− α)(I − αΓ)−1δ.

βi counts all ‘α-discounted’ walks from i and weighs walks to j by
(1− α)δj , so:

β ∝ δ + αΓδ + α2Γ2δ + · · ·
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No Complexity

The centrality of player i is the ith entry of:

β = (1− α)(I − αΓ)−1δ.

p?1

β2

β1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

Fact A. (Ballester et
al. ’06)
If k = 0, in the unique
equilibrium:

Eχ(p) = β.
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Single Player

(p0, χ(p0))

Eχ(·)

policy (pi)

ou
tc
om

es
(x
)

Fact B. (Callander ’11a)
If α = 0, player i has a
unique optimal policy pi:

Eχ(pi) = δi + k.
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Single Player
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Eχ(·)
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policy (pi)
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)
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Single Player
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Fact B. (Callander ’11a)
If α = 0, player i has a
unique optimal policy pi:
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Two Players

1 2

γ12 = 1

γ21 = 1

Γ =
(

0 1
1 0

)

And: δ1 > δ2
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Two Players

1 2

γ12 = 1

γ21 = 1

Γ =
(

0 1
1 0

)

And: δ1 > δ2

no complexity

=⇒ p1 < p2 .
Disentangling pure noise and correlation of players’ outcomes.
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Two Players | Independent Outcomes
Player i’s outcome of policy pi is:

χi(pi) = χ(p0) + µpi + σW i(pi), for independent standard W 1,W2.
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Two Players | Independent Outcomes
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χi(pi) = χ(p0) + µpi + σW i(pi), for independent standard W 1,W2.

p∗1 p∗2p?1

↑ β2 + 1
1−αk

↑ β1 + 1
1−αk

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

In the unique equilibrium:

Eχi(p∗i ) = βi +

> 1︷ ︸︸ ︷
1

1− α k.

amplified
s.q. bias
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1−αk

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

In the unique equilibrium:

Eχi(p∗i ) = βi +

> 1︷ ︸︸ ︷
1

1− α k.

amplified
s.q. bias

Conformity? Eχi(p∗i )− Eχj(p∗j ) = βi − βj .−2 α

1 + α
k︸ ︷︷ ︸

< 0

.
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Two Players | Correlated Outcomes
Player i’s outcome of policy pi is:

χ(pi) = χ(p0) + µpi + σW (pi). for independent standard W 1,W2
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Two Players | Correlated Outcomes
Player i’s outcome of policy pi is:

χ(pi) = χ(p0) + µpi + σW (pi). for independent standard W 1,W2

p1 p2p?1

Eχ(p2)

Eχ(p1)

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

If p1 < p2, then:
2 is the Leader and 1 is the
Follower,

Cov(χ(p1), χ(p2)) = Varχ(p1).
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→ BR(p2) p2 p?1

Eχ(p2)

Eχ(BR(p2))
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policy (pi)
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Two Players | Correlated Outcomes
Player i’s outcome of policy pi is:

χ(pi) = χ(p0) + µpi + σW (pi). for independent standard W 1,W2

p?1 p?2

↓ Eχ(p?2)

↓ Eχ(p?1)

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

In the unique equilibrium:

Eχ1(p?1) = βi + k +
1

1 + α
k,

Eχ2(p?2) = β2 + k −
1

1 + α
k,

if: δ1 − δ2 > 2k α
1−α .

Conformity: Eχ(p?1)− Eχ(p?2)− (β1 − β2) = −2 α

1 + α
k︸ ︷︷ ︸

< 0

.
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Two Players | Imperfect Correlation
Outcomes are given, for ρ ∈ [0, 1], by:
χ1(p1) = χ(p0) + µp1 + σW 1(p1)

χ2(p2) = χ(p0) + µp2 + ρσW 1(p2) +
√

1− ρ2σW 2(p2).

⇒ Corr(χ1(p), χ2(p)) = ρ

13 / 16



Two Players | Imperfect Correlation
Outcomes are given, for ρ ∈ [0, 1], by:
χ1(p1) = χ(p0) + µp1 + σW 1(p1)

χ2(p2) = χ(p0) + µp2 + ρσW 1(p2) +
√

1− ρ2σW 2(p2).
⇒ Corr(χ1(p), χ2(p)) = ρ

13 / 16



Two Players | Imperfect Correlation
Outcomes are given, for ρ ∈ [0, 1], by:
χ1(p1) = χ(p0) + µp1 + σW 1(p1)

χ2(p2) = χ(p0) + µp2 + ρσW 1(p2) +
√

1− ρ2σW 2(p2).
⇒ Corr(χ1(p), χ2(p)) = ρ

→ BR(p2) p2 p?1

Eχ(p2)

Eχ(BR(p2))

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

=⇒ ρ-Weighted Extra Exploration Motive for 1.
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Two Players | Imperfect Correlation
Outcomes are given, for ρ ∈ [0, 1], by:
χ1(p1) = χ(p0) + µp1 + σW 1(p1)

χ2(p2) = χ(p0) + µp2 + ρσW 1(p2) +
√

1− ρ2σW 2(p2).
⇒ Corr(χ1(p), χ2(p)) = ρ

In equilibrium:

Eχ1(p1)− Eχ2(p2)− (β1 − β2) = ρ

(
−2 α

1 + α
k

)
︸ ︷︷ ︸

< 0
(perfect correlation)

.

13 / 16



Strategic Complementarities

Lemma 1 (Strategic Complementarities)
The expected payoff Eπi(χ(p)) exhibits strictly increasing differences
in (pi,p−i), for every player i.

I Complementarities in outcomes.
I Covariance structure (Cov(χ(p1), χ(p2)) = Varχ(p1)). More

Theorem 1 (Existence)
There exist a greatest and least equilibrium.

I Tarski’s fixed point theorem.
(Milgrom-Shannon ’90, Vives ’90.)
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Equilibrium Decomposition

Proposition 1 (Decomposition)
The profile of policies p ∈ (p0, p)n is an equilibrium if and only if:

Eχ(p) = β + k1 + α(I − αΓ)−1(Γ�A)1k,

for a matrix A = (aij) such that aij ∈ [−1, 1] and

aij =
{

1 if pi > pj ,

−1 if pi < pj .

(� is element-wise product.)
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Equilibrium Decomposition

Proposition 1 (Decomposition)
Without coordination, p ∈ (p0, p)n is an equilibrium iff:

Eχ(p) = δ︸︷︷︸
k=0

+ k1︸︷︷︸
status quo

bias

,
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Equilibrium Decomposition

Proposition 1 (Decomposition)
The profile of policies p ∈ (p0, p)n is an equilibrium if, and only if:

Eχ(p) = β︸︷︷︸
k=0

+ k1︸︷︷︸
status quo

bias

+αk(I − αΓ)−1(Γ�A)1︸ ︷︷ ︸
coord.+ compl.

,

for a matrix A = (aij) such that aij ∈ [−1, 1] and

aij =
{

1 if pi > pj ,

−1 if pi < pj .

Player i’s conformity effect weighs each walk to j by
wj :=

∑
` αkγ

j`aj`:

w + αΓw + α2Γ2w + · · · = α(I − αΓ)−1(Γ�A)1k.

(� is element-wise product.)
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Conformity

Suppose the network is complete.

Lemma 2 (Pairwise Conformity)
If p ∈ (p0, p)n is an equilibrium:

If pi < pj , then: Eχ(pi)− Eχ(pj) < βi − βj .
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Conformity

Suppose the network is complete.

Lemma 2 (Conformity in Ordered Equilibria)
Let p ∈ (p0, p)n be an equilibrium. If p1 < · · · < pn, then:

Eχ(pi)− Eχ(pi+1)− (βi − βi+1) = −2 α

1 + α
k︸ ︷︷ ︸

↓ in α & k

.

1. If ↑ k, matching a leader’s outcome is a more cost effective way of
dealing with uncertainty

+ Conformity ‘feeds back’ through the
network.

2. “Yielding is far greater on difficult items than on easy ones.”
(Asch ’51; difficulty elicited as “certainty of judgement”.)

counterformity
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Order Structure of the Equilibrium Set

Let n = 2 and δ1 = δ2 = 0.
Every equilibrium p is symmetric: p1 = p2.

(0, p0)

status-quo
outcome (χ(p0))

po
lic

y
(p
i
)

Figure: The equilibrium set, represented by player i’s policy, for every
status-quo outcome.
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Extensions

(1) The outcome of policy p to player i
is:

χi(p) = χ(p0) + µp+ σW i(p),

with dW i(p)dW j(p) = ρcijdt.

In equilibrium, if Γ is
irreducible:

Eχi(pi) = βi +

amplified
s.q. bias

ai︸︷︷︸
>1

k +

exploration
motive

ρ bi︸︷︷︸
≤0

k ,

[(cij) symm. pos.-def., cijρ ∈ [0, 1].]

(2) Player i believes that the initial
point is:

(pi0, χ(pi0)).
private

information.

More

Single Crossing.
The expected payoff
Eiπi(χ(pi),χ(σ−i)) has strictly
increasing differences in
(pi, χ(pi

0)), if strategies in σ−i
are nondecreasing.
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Counterformity

0 γL γ23 γH

0

γ12

C12

C13

C23

Cij = Eχ(p?i )− Eχ(p?j )− βi + βj .

conformity
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Distribution

For p0 < p < q:

Eχ(p) = χ(p0) + µ(p− p0)
Varχ(p) = (p− p0)σ2

Cov(χ(p), χ(q)) = Varχ(p).
= min{p− p0, q − p0}σ2

Back

16 / 16



Coordination and Complexity

If ω > 0 and α > 0, ‘kinked’ mean-variance decomposition.

With
n = 2 and δ1 = δ2 = 0, player i’s loss given pi ≥ pj ≥ p0 is

E(χ(pi)− αχ(pj))2 = (Eχ(pi)− αEχ(pj))2 + Vχ(pi)
−2αC(χ(pi), χ(pj))︸ ︷︷ ︸

k > 0 & α > 0

+ · · · ,

in which:

C(χ(pi), χ(pj)) = C(χ(pj) + χ(pi)− χ(pj)︸ ︷︷ ︸
increment from χ(pj)

, χ(pj))

= min{Vχ(pi),Vχ(pj)}.

(Independent increments = ‘maximum ignorance’, Jovanovic-Rob ’90.)

Endogenous location of the kink: pj .
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Coordination and Complexity

Covariance (min{Vχ(pi),Vχ(pj)}) is supermodular in (pi, pj).

1

0

∂pi
C(χ(pi), χ(pj))

pj

i’s policy (pi)

Back
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Covariance
f(p1, p2) has strictly increasing differences in p1 and p2 if:

p′1 > p1 and p′2 > p2 =⇒ f(p′1, p′2)− f(p1, p
′
2) > f(p′1, p2)− f(p1, p2).

Cov(χ(p), χ(p′)), for p0 = 0 and p, p′ > 0, can be:
I Brownian:

min{p, p′}σ2; X

I Ornstein-Uhlenbeck:

e−
|p−p′|

` , ` > 0; X

I Squared exponential:

e−
(

p−p′
`

)2

, ` > 0. X

Back
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