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Abstract

I study the persuasion of a receiver who accesses information only if she exerts
attention effort. The sender uses information to incentivize the receiver to pay
attention. I show that persuasion mechanisms are equivalent to signals when the
receiver’s private information includes the cost of her attention effort. In a model of
media capture, the sender finds it optimal to make the receiver distinguish between
high states and intermediate states.
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1 Introduction

In the “information age,” consumers of information decide whether an information
source deserves attention because information acquisition is costly (Floridi, 2014; Simon,
1996). The information-design literature studies a sender who supplies information to a
receiver, to persuade the receiver to take a certain action (Bergemann and Morris, 2019;
Kamenica, 2019). When attention is costly, the sender faces the dual problem of (i)
persuading the receiver to take a certain action and (ii) inducing her to pay attention.
In this paper, I study the persuasion of a receiver who is privately informed about her
cost and benefit of information, in which the sender uses information to reward the
receiver for her effort.

The intensive margin of persuasion captures intensity of the sender’s persuasion
on the receiver’s action decision, while the extensive margin of persuasion refers to
whether or not the receiver pays attention to the sender’s information. The study of the
extensive margin of persuasion is important to determine which consumers have access
to information. In a persuasion game, the sender effectively allocates information to a
heterogeneous audience. For instance, today’s central banks use “layered communication”
to reach the general public, characterized by heterogeneous and limited information-
processing ability, as discussed in Section 5. In my model, I investigate the following
questions: Who accesses information? Does the receiver benefit from the limit to her
information-processing ability?

In order to study the extensive and intensive margin of persuasion, I model the
persuasion of an inattentive receiver who takes a binary action, 1 or 0. There is a state
θ unknown to two players: Sender (he) and Receiver (she). Receiver chooses 1 only if
she expects the state θ to exceed her outside option. Sender wants Receiver to choose
1 regardless of the state. In the baseline model, Sender designs a random variable S
correlated with the state θ, called signal. Knowing the signal S, but not its realization,
Receiver chooses her attention effort e: high effort is costly and increases the probability
of observing the signal realization. The choice of effort captures the choice of acquiring
information about the state, and the cost of effort may be monetary or psychological.
The timing is as follows.

(1) Sender chooses signal S, without knowing the Receiver’s type, which includes her
effort cost and outside option.
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(2) Receiver chooses her effort e;

(3) Receiver observes the realization of S with probability e, and observes an uninfor-
mative signal with the remaining probability. She chooses action 1 or 0 given her
posterior belief.

For instance, let’s suppose that a university (Sender) wants its graduates to find
employment at a renowned firm (Receiver), regardless of their skills (state), while
the firm finds it profitable only to hire high-skill graduates. The university decides
how to best advertise its graduates to maximize the probability that the graduates
are hired by the renowned firm. The university’s marketing policy includes: grading
policy, social-media presence, advertisement of graduates’ achievements, and so on.
There are two main forces that determine the optimal marketing: the university wants
the firm to (i) pay attention to the marketing campaign, and (ii) hire the graduates.
Paying attention refers to the extensive margin of persuasion: is the firm reached by
the marketing efforts? The hiring decision refers to the intensive margin of persuasion:
does the firm hire the graduates, given the information acquired from the marketing
campaign? The private information of Receiver, in this example, captures the fact that
the university is not fully informed about (i) the extent to which the firm is hiring, and
the platforms where firms seek job candidates (cost of effort); and (ii) the firm’s hiring
process, including intervew questions and tests (outside option).

The extensive margin of persuasion arises because Receiver is privately informed
about her type. In particular, the sender takes into account that increasing the
correlation between the state and the signal has two effects: on Receiver’s attention
effort e— the extensive margin of persuasion —, and on Receiver’s action if she observes
the realization of S — the intensive margin of persuasion.

I show the equivalence between persuasion mechanisms and signals. Let’s suppose
that Sender commits to a persuasion mechanism, which is a menu of signals S•, as
opposed to a single signal. Under a persuasion mechanism, Receiver reports a type and
chooses an effort level. In particular, Receiver chooses the probability with which to
observe the signal from the menu that corresponds to her reported type. A mechanism
is incentive-compatible if Receiver finds it optimal to report her type truthfully. For
every incentive-compatible persuasion mechanism S•, I construct a signal S that induces
the same action and effort distributions over Receiver types (Theorem 1). The key
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θ is revealed Pool

state (θ)0 1θ?

Figure 1: An upper censorship is a signal that reveals states below a cutoff state θ?,
and sends a single realization, Pool, if the state is above the cutoff.

θ is revealed Pool1 Pool2

0 1θ1 θ2

Figure 2: A bi-upper censorship is a signal that reveals low states and separates high
from very high states.

is to establish a supermodularity property of type-t Receiver’s expected utility: the
return from effort is increasing in a t-specific informativeness order, which agrees with
Blackwell’s order whenever possible. I construct a single signal S that attaches to each
Receiver’s type the same t informativeness as the incentive-compatible mechanism S•.
This result shows that Sender does not need to offer a fine collection of information
structures, and allows the study of persuasion to focus on single signals.

I characterize the optimal information structure in commonly-studied applications,
which censors high states. An upper censorship is a signal that reveals low states, and
censors high states, as in Figure 1. Upper censorships are optimal signals if the Receiver’s
outside option admits a single-peaked distribution (Theorem 2). Given the equivalence
between persuasion mechanisms and signals, we can focus on upper censorships to study
the extensive margin of the Sender’s persuasion in applications. I apply my results
to the problem of media censorship. If Sender knows Receiver’s attention cost and
has preferences over the extensive margin, inspired by models of media capture à la
Gehlbach and Sonin (2014), bi-upper censorships are optimal signals (see Figure 2). I
study the effect of changes in Receiver’s attention cost on the information provided by
the Sender, measured à la Blackwell, through the optimal upper censorship. I do so
by isolating the effect of each of the two dimensions of Receiver’s private information.
Sender provides more information as Receiver’s attention cost stochastically increases,
if he knows Receiver’s outside option (Proposition 2). Moreover, Sender provides more
information as the Receiver’s attention cost increases, if he knows the attention cost
and that cost is sufficiently small (Proposition 3).
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Related Literature If the receiver’s attention is costless, prior work determines the
extent of a sender’s intensive margin of persuasion (Kamenica and Gentzkow, 2011;
Kolotilin et al., 2017). To study the extensive margin of persuasion, the model of this
paper features either the receiver’s attention cost, and the receiver’s private information.
The attention costs lead Receiver to decide whether to become informed, and the private
information captures the heterogeneity of attention choice in the audience of a sender.
Persuasion of an inattentive receiver has been studied in three models, which do not
include Receiver’s private information. Wei (2021) studies a receiver who incurs a
cost to reduce her uncertainty about the state. Matysková and Montes (2021) study a
receiver who acquires costly information about the state from a third party. Differently
from these papers, I consider a receiver whose attention cost is not within the rational-
inattention paradigm. In the main model of Bloedel and Segal (2021), the receiver
bears a cost proportional to the mutual information between the sender’s signal and
the receiver’s signal about the sender’s one. In a separate model, the authors study the
same cost structure as in my paper.1 Differently from these models, I include Receiver’s
private information to study a rich extensive margin of persuasion. The connection
with these papers is further discussed in Section 2.

If attention effort is costless, optimality properties of upper-censorship signals are
known (Gentzkow and Kamenica, 2016; Kolotilin, 2018; Dworczak and Martini, 2019;
Kleiner et al., 2021; Kolotilin et al., 2022; Shishkin, 2019), and the equivalence between
persuasion mechanisms and signals is shown by Kolotilin et al. (2017) (see also Guo and
Shmaya (2019)). I generalize these results to the case of receiver’s costly and privately
known attention effort.

The literature on incomplete-information beauty contests studies the supply of
Gaussian signals to inattentive receivers.2 The restriction to Gaussian signals renders
many questions about optimal information structures moot. The literature on media
capture considers the provision of information to receivers who are privately informed,
either about the opportunity cost of supporting an incumbent politician, or about their

1Either in Wei (2021) and in the special case of Bloedel and Segal (2021), the analysis assumes that
every signal has at most two realizations with positive probability, which is without loss of generality,
although for different reasons in the two models. This assumption would imply a loss of generality in
my model because Receiver has private information.

2Several models characterize the optimal supply of Gaussian signals to inattentive receivers, see
Cornand and Heinemann (2008); Chahrour (2014); Myatt and Wallace (2014); Galperti and Trevino
(2020); see also Nimark and Pitschner (2019), and references therein, for related models.
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attention cost (respectively, Kolotilin et al. (2022) and Gehlbach and Sonin (2014)).3

Outline I present the model in the next section. In Section 3.1, I describe the
equivalence between persuasion mechanisms and signals. In Section 3.2, I characterize
the extensive margin of persuasion. In Section 4.1, I study optimal signals and welfare
implications of changes in Receiver’s attention cost. In Section 4.2, I discuss implications
for the theory of media capture.

2 Model

A Sender (he) and a Receiver (she) play the following persuasion game. Before the
state θ ∈ Θ := [0, 1] is realized, players have a common prior µ0 ∈ ∆Θ, which admits
an absolutely continuous CDF F0.4 Receiver’s type t = (ζt, λt) ∈ T , where T = [0, 1]2,
is distributed independently of the state θ, according to a CDF H. ζt is Receiver’s
threshold type, or outside option, λt is Receiver’s attention type, or attention cost.
Receiver’s material payoff from taking action a ∈ {0, 1} is uR(a, θ, ζt) = a(θ− ζt), when
her threshold type is ζt and the state is θ. Receiver’s effort cost, if her attention effort
is e ∈ [0, 1], is given by λtk(e), where k is a continuous function. The Receiver’s utility
is given by the difference between her material payoff and her effort cost:

UR(a, θ, e; t) := uR(a, θ, ζt)− λtk(e).

Sender always wants Receiver to take action 1, and his utility when Receiver chooses
action a is US(a) = a.

The timing of the game is as follows.

• Sender publicly commits to a signal, which is a measurable function σ : Θ→ ∆M ,
where M is an exogenous rich space of signal realizations.5

• Nature draws Receiver’s type t according to H.

• Receiver chooses an effort e ∈ [0, 1], knowing her type t.
3See Prat (2015) for a survey of the literature on media censorship.
4∆X denotes the set of Borel probability measures over the set X .
5It is sufficient that M = [0, 1].
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• Nature draws the state θ according to µ0, and a message m ∈ M ∪ {φ}. m is
drawn from σ(θ) with probability e, and m is equal to φ, where φ /∈M , with the
remaining probability.

• Receiver observes the message m, and then updates her belief about θ, using
Bayes’ rule and knowledge of σ and the prior µ0. Given her posterior belief, she
chooses an action a ∈ {0, 1}.

We analyze Sender-optimal Perfect Bayesian Equilibria of this game, in line with the
literature on Bayesian persuasion. We denote by F the CDF corresponding to full mass
at x0 which is the prior mean of θ.

Receiver’s optimal action and effort Let’s describe type-t Receiver’s optimal
action, given her posterior belief µ ∈ ∆Θ. Letting t = (ζ, λ), the optimal action
is 1 if the expected state according to µ, x, exceeds her threshold type ζ, and the
optimal action is 0 if the expected state according to µ is such that x < ζ.6 Thus,
Receiver’s optimal action depends on belief µ only through its mean xµ :=

∫
Θ θ dµ(θ).

The Receiver’s material payoff at belief µ is her expected material payoff when her belief
is µ:

vt(µ) :=
∫ 1

0
uR([xµ ≥ ζ], ζ, θ) dµ(θ),

where [P ] is the Iverson bracket of the statement P : [P ] = 1 if the statement P is true,
and [P ] = 0 otherwise. We note that vt(µ) depends on the belief µ only through its
induced mean xµ.

Sender’s maximization problem After Sender chooses a signal that induces the
distribution over posterior beliefs p ∈ ∆∆Θ, type-t Receiver chooses her effort to
maximize her expected utility. In particular, she faces the maximization problem given
by

max
e∈[0,1]

e

∫
∆Θ

vt(µ) dp(µ) + (1− e)vt(µ0)− λtk(e). (1)

6We break the Receiver’s indifference in favor of Sender. This assumption is without loss of generality
given our assumption thatH is absolutely continuous. This assumption is necessary for Sender optimality
when Sender knows Receiver’s threshold type (see, e.g., Gentzkow and Kamenica (2016)).

8



If k is smooth, the optimal effort is obtained by a simple marginal-cost-marginal-benefit
analysis. Type-t Receiver compares the marginal benefit of committing to observing
the signal with probability e to the marginal cost of such a commitment. The marginal
benefit is the difference between the expected material payoff when Receiver updates her
beliefs according to p and the material payoff at the prior belief:

∫
∆Θ vt(µ) dp(µ)−vt(µ0).

We refer to this difference as the marginal benefit of effort at the random posterior
p.7 If k is differentiable, the marginal cost of effort e is given by λt ∂k∂e (e). Since vt(µ)
depends on belief µ only through its induced mean, the random posterior p influences
Receiver’s effort decision only through the marginal benefit of effort. In particular, if
the signal’s informativeness increases in the Blackwell order, the marginal benefit of
effort shifts upward for every Receiver’s type; while the marginal cost of effort does not
change. We denote by E(p; t) the nonempty set of maximizers of the above program,
which we study in Section 3.2.

Let’s describe the role of the extensive and the intensive margin of persuasion in
the Sender’s incentives. We use the formalism of random posteriors, as done in the
literature on persuasion. Let R be the set of feasible random posteriors: distributions
of the Receiver’s belief satisfying the martingale condition.8 We describe the Sender’s
choice of a feasible random posterior, which is without loss of generality.9 We define
the Sender’s payoff at belief µ using Receiver’s optimal action as: VS(µ; t) := [xµ ≥ ζt].
The Sender’s problem is:

sup
p,e(·)

∫
∆Θ

∫
T
e(t)(VS(µ; t)− VS(µ0; t)) dH(t) dp(µ)

s.t. p ∈ R and e(t) ∈ E(p; t) for all t ∈ T.

We decompose the persuasion of a Receiver’s type into two terms. The Receiver’s
optimal action depends only on the mean of the Receiver’s belief, which is either

7The marginal benefit of effort at a random posterior p is commonly referred to as the value of the
information of the signal that induces p.

8In particular:

R :=
{
p ∈ ∆∆Θ :

∫
∆Θ

µdp(µ) = µ0

}
.

9Every signal induces a distribution in R, by the martingale property of Bayesian updating. Moreover,
for all p ∈ R, there exists a signal that induces p as the distribution of the posterior belief; see, e.g.,
Kamenica and Gentzkow (2011) and Appendix C.2 in Lipnowski and Ravid (2199).
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the (random) posterior mean following the information policy p, or the prior mean∫
Θ θ dµ0(θ) =: x0. The effort chosen by Receiver is the probability that the mean of
the Receiver’s belief is the (random) posterior mean following the information policy
p. Thus, the Sender’s expected payoff depends on the feasible random posterior p in
two ways, which can be ascribed to the intensive and the extensive margin of Bayesian
persuasion. First, type t acts if the posterior mean is higher than type-t outside option
ζt. Letting a◦(t) = [x0 ≥ ζt] and a?(µ, t) = [xµ ≥ ζt], and assuming maximum effort,
the equilibrium expected action is larger than under an uninformative signal by the
following amount:10

∫
∆Θ

VS(µ; t) dp(µ)− VS(µ0; t) = E{a? − a◦ | t, e(p, t) = 1}.

Second, each type t has some probability of updating her belief, which is t’s effort
decision e(p; t). Letting e(p, t) be the effort chosen by type-t Receiver, the expected
change in Receiver’s action is:

e(p, t)︸ ︷︷ ︸
extensive margin

(∫
∆Θ

VS(µ; t) dp(µ)− VS(µ0; t)
)

︸ ︷︷ ︸
intensive margin

= E{a? − a◦ | t}︸ ︷︷ ︸
persuasion of type t

.

The term e(p, t) captures the extensive margin of persuasion: different posterior distri-
butions may lead to different effort decisions of type t. The second term captures the
intensive margin of persuasion: different posterior distributions may lead to different
distributions of a? − a◦, given Receiver’s type t.

Benchmark cases If infomation is costless, the model is equivalent to persuasion
of a privately informed receiver as studied in prior work (e.g., Kolotilin et al. (2017);
Kolotilin (2018)). The extensive-margin term in the persuasion decomposition is moot.
If information is costly and Receiver’s type t is known to Sender, our framework specifies
to the model studied by Bloedel and Segal (2021), in which Sender solves

sup
p,e

∫
∆Θ

e(VS(µ; t)− VS(µ0; t)) dp(µ) (2)

s.t. p ∈ R and e ∈ E(p; t). (3)

10The following conditional expectation given t is taken with respect to the random posterior that is
distributed according to p.
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As Bloedel and Segal (2021) observe, we can use a first-order approach when k is
sufficiently smooth; moreover, there exists an optimal signal that is a binary signal
by a revelation-principle argument. The problem in Equation 2 is similar to that
studied in the attention-management literature (Lipnowski et al., 2020, 2022a; Wei,
2021). If we assume that the attention-management Sender wants Receiver to take
action 1 regardless of the state, the maximization in 2 is a constrained version of the
attention-management one.11 In particular, in our model, Receiver effectively chooses
an element from a specific set of garblings of the posterior: the mixtures of the Sender’s
signal and an uninformative signal. In the attention-management literature, Receiver’s
choice of garbling is unrestricted.

Information policies Receiver chooses her effort to maximize her expected utility
(Problem 1), and the marginal benefit of effort depends on the random posterior p
only through the distribution of posterior means. Thus, we identify a feasible random
posterior with the induced posterior mean distribution, and here we formalize this
representation (similarly to, e.g., Gentzkow and Kamenica (2016)). Let D be the
collection of CDF’s over [0, 1]. A CDF F is feasible if it represents the posterior mean
distribution of a feasible random posterior. By Blackwell’s theorem, a CDF F is feasible
if, and only if: F is a mean preserving contraction of F0. Let’s define the information
policy of a CDF F ∈ D as:

IF : R+ → R+

x 7→
∫ x

0
F (y) dy.

The information policy of a feasible F , IF , is upper bounded pointwise by F0, due to
Blackwell’s theorem. IF is lower bounded pointwise by F , because the uninformative
signal does not change the mean of the receiver’s belief. Moreover, IF is convex because
F is nondecreasing. These are the only three constraints on feasible information policies,
so we identify a feasible random posterior with its induced information policy (Gentzkow

11Sender wants Receiver to take action 1 regardless of the state in Wei (2021), while Sender maximizes
Receiver’s material payoff in Lipnowski et al. (2020, 2022a). The optimal signal for a Sender who wants
action 1 regardless of the state is not characterized in attention management, except in the binary-state
case (Wei (2021)).
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and Kamenica, 2016). The set of feasible information policies is:

I := {I : R+ → R+ | I is convex and IF0(x) ≥ I(x) ≥ IF (x) for all x ∈ R+}.

We analyze the Sender’s problem as a choice of an information policy I ∈ I. There are
two reasons why this choice of formalism pays off. First, I is a measure of the Blackwell
informativeness of the corresponding signal. In particular, σ is a more informative signal
than τ if, and only if, Iσ(x) ≥ Iτ (x), x ∈ [0, 1], where IS denotes the information policy
corresponding to the posterior mean’s CDF induced by signal S. Thus, the pointwise
ranking of information policies correspond to Blackwell’s information order. Second,
information policies offer a tractable characterization of optimal effort, as the next
Lemma shows.

Preliminary results Receiver chooses effort by comparing her payoff from updating
her belief and her payoff from remaining uninformed. Let’s develop notation to deal
with this comparison. We define the operator ∆ as:

∆: I 7→ I − IF .

We denote by ∆I the composite function ∆(I). For the information policy I, ∆I is
a measure of the “net” informativeness, where the Blackwell’s informativeness of the
uniformative signal, given by IF , is used as a benchmark. We characterize Receiver’s
marginal benefit of effort in terms of the Sender’s information policy I. For an informa-
tion policy I, we let I ′(x) denote the right derivative evaluated at x, which is the value
attained by a CDF evaluated at x, and I ′(x−) denote its left derivative.

Lemma 1 (Marginal Benefit of Effort). Receiver’s marginal benefit of effort given the
information policy I and her type (ζ, λ) is:

∫ 1

0
uR([x ≥ ζ], x, ζ) dI ′(x)−

∫ 1

0
uR([x ≥ ζ], x, ζ) dI ′

F
(x) = ∆I(ζ).

Proof. For an information policy I ∈ I:

∫ 1

0
uR([x ≥ ζ], x, ζ) dI ′(x) =

∫ 1

ζ
x− ζ dI ′(x)

= x0 − ζ + I(ζ)
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The second equality follows from Riemann-Stjeltes integration by parts, using I ′(1) = 1
and I(1) = 1− x0. �

The marginal benefit of effort is increasing in the informativeness of I, measured à
la Blackwell. We define type-(c, λ) indirect utility V at the information policy I

V (∆I(c);λ) = max
e∈[0,1]

e∆I(c)− λk(e)− vt(µ0),

and we refer to V (∆I(c);λ) as the value of information policy I to type (c, λ). The
optimal effort of type (c, λ), given information policy I, is an element of E(∆I(c);λ),
where:

E(∆I(c);λ) = arg max
e∈[0,1]

e∆I(c)− λk(e).

Type-t Receiver’s payoff is increasing in the Blackwell information of the Sender’s
signal, by Blackwell’s theorem. Thus, type-t Receiver’s value of information policyI is
increasing in the informativeness of I. This fact arises as an implication of monotone
comparative statics and the envelope theorem, stated in the next Lemma.

Lemma 2. Type-t Receiver’s value of information V (∆I(ζt), λt) is a nondecreasing,
absolutely continuous and convex function of ∆I(ζt).

Proof. We observe that f : (e,∆I(ζt)) 7→ e∆I(ζt) is supermodular. The result follows
from the envelope theorem for supermodular optimization (Fact 2 in the Appendix). �

Unsurprisingly, this result states that Receiver’s payoff is increasing in the Blackwell
information of the Sender’s information policy. However, Blackwell’s order is incomplete.
We leverage the Lemma to construct a natural type-specific completion of the Blackwell
order over information policies. Let’s construct a t-specific informativeness order over
information policies: �t over I, such that

J �t I iff ∆J(ζt) ≤ ∆I(ζt), for every J, I ∈ I.

�t is a complete order that agrees with Blackwell’s order whenever possible. �t is a local
informativeness measure that is a sufficient to caracterize a type-t Receiver’s behavior.
To prove Lemma 2, we leverage the fact that type-t Receiver’s expected utility is
supermodular in informativeness and effort, ordering informativeness by �t. In the next
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section we leverage this observation to prove a strong equivalence between persuasion
mechanisms and signals, and in the following section we leverage this observation to
study the extensive margin of Bayesian persuasion.

3 Main Results

3.1 Equivalence of Persuasion Mechanisms and Signals

In this section, we consider a more general setup than the previous model. We expand
the Sender’s strategy space, to include “menues” of signals. We ask whether Sender
attains a larger payoff by committing to such a menu, so that each Recever’s type
self-selects into her preferred signal, than by choosing a single information policy.

A persuasion mechanism is a collection of information policies: (Ir)r∈T , where Ir ∈ I
for all reports r ∈ T . We refer to a persuasion mechanism as I•, omitting the reference
to reports. A persuasion mechanism I• is incentive compatible (IC) if:

V (∆It(ζt), λt) ≥ V (∆Ir(ζt), λt), for all types t ∈ T and reports r ∈ T .

We interpret a persuasion mechanism as a rule allocating a signal to every report of
Receiver’s type. Thus, a persuasion mechanism is IC if it is optimal for Receiver to
report her type truthfully. In particular, after her report r, Receiver chooses an effort
optimally given the information policy Ir. By a revelation-principle arguments, a Sender
who commits to a persuasion mechanisms can, without loss of optimality, commit to an
IC persuasion mechanism. We focus on IC persuasion mechanisms in what follows.

The following two definitions characterize a notion of equivalence between an IC
persuasion mechanism I• and a single information policy J . An IC persuasion mechanism
I• and an information policy J induce the same effort and action distributions if the
following two conditions hold.

(1)

E(∆It(ζt);λt) ⊆ E(∆J(ζt);λt), for all t ∈ T . (4)
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(2)

I ′t(ζ−t ) = J ′(ζ−t ), for all t ∈ T such that E(∆I(ζt);λt) ∩ (0, 1] 6= ∅.

The following result allows us to study effort and action distributions of persuasion
mechanisms via information policies, thus bypassing the screening problem.

Theorem 1. For every IC persuasion mechanism I• there exists an information policy
J such that: I• and J induce the same effort and action distributions.

Proof. Section B in the Appendix. �

There is a simple intuition for this result, which leverages the local informativeness
order �t. �t determines the choice of type-t Receiver from the collection of information
policies of a persuasion mechanism I•, by Lemma 2. Letting c be t’s threshold type, we
know that type t chooses that information policy I? from the mechanism (Ir)r∈T such
that ∆I?(c) ≥ ∆Ir(c) for every r ∈ T . It is readily established that J := supr∈T Ir is
a feasible information policy: J is pointwise bounded by IF0 and IF because Ir is an
information policy for every r ∈ T , and J is convex because J the pointwise supremum
of convex functions. In the proof we show that J replicates effort and action decisions
of every type t given the IC mechanism (Ir)r∈T .

In the next section we study Sender’s optimization by choice of a single information
policy. In light of Theorem 1, the following results are relevant to the study of persuasion
mechanisms. In particular, a takeaway of Theorem 1 is that single information policies
are without loss of generality for welfare analysis.

Remark 1. Let’s recall that type-t Receiver’s expected utility is supermodular in
informativeness, as orderd by �t, and effort. As a confirmation that supermodularity
the key intuition for Theorem 1, in Section B of the Appendix, we prove the result
assuming supermodular Receiver’s interim payoff, as a function of informativeness and
effort. This specification nests the original model where Receiver’s ex-post utility is
given by UR.

3.2 Characterization of the extensive margin

We characterize effort decisions assuming smoothness conditions on k.
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Assumption 1 (Smooth Effort Cost). k is a differentiable convex function on [0, 1],
and satisfies: k′(1) > 1− x0.

Under Assumption 1, we denote by k′(e) the derivative of k at effort e.

Lemma 3. Let Assumption 1 hold, I ∈ I, and et be any element of E(∆I(ζt), λt).

∆I(ζt) ≤ λtk′(et),

with equality if et > 0.

Proof. Receiver maximizes a concave function over a compact set. A solution exists and,
by differentiability of k, we can use standard Lagrangean arguments to show that it has
the prescribed form, so long as optimal effort is in [0, 1). Let’s see that the requirement
that k′(1) > 1− x0 assumes away boundary solutions at 1. Because I(1) = 1− x0, we
have ∆I(ζ) ≤ 1− x0 < k(1), for every ζ ∈ [0, 1]. �

The marginal-cost-marginal-benefit analysis of Receiver’s effort decision is depicted
in Figure 3. Net informativeness ∆I defines a continuous function of Receiver’s outside
option, with a peak at the cutoff type that is equal to the prior mean x0. The proof
of this statement is in the Appendix (Lemma 6). The intuition for single-peakedness
comes from the observation that the marginal benefit of effort is ∆I(ζ), given I (Lemma
1). Type x0 finds it valuable to observe any signal about θ, in order to make a more
informed choice than if she is left at the prior. Extreme types have, instead, the least
to gain from committing to observe a signal: the ex-ante probability that a signal
realization modifies t’s optimal action is low because only extreme realizations of the
state are pivotal for their optimal action. If we intersect the marginal benefit of effort
∆I with λtk′(0), we observe that, in general, intermediate types will exert a positive
effort, and extreme types will not exert any effort. This result is depicted in figure 3, and
implies that the set of Receiver types who become informed is defined by the two cutoff
types who are just indifferent between exerting positive effort and not exerting any
effort. Under Assumption 1, the cutoff types given information policy I and attention
cost λ are:

cλ(∆I) := min{c ∈ [0, 1] | ∆I(c) ≥ λk′(0)},

cλ(∆I) := max{c ∈ [0, 1] | ∆I(c) ≥ λk′(0)},
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cλ(∆I) x0 cλ(∆I) 1

λk′(0)

∆I

Figure 3: The set of types c who exert positive attention effort is an interval.

with the requirement that if either of the two sets is empty, the relevant cutoff type is
x0. The next observation is that the interval shape of the extensive margin generalizes.
By the supermodularity property of the Receiver’s value function, type-t’s optimal effort
is nondecreasing in ∆I(ζt) without differentiability hypotheses.

Proposition 1. Let I be an information policy, and e(c, λ) ∈ E(∆I(c), λ) for every
type (c, λ). Then, e(·, λ) is single-peaked, with a peak at x0.

Proof. We observe that f : (e,∆I(ζt)) 7→ e∆I(ζt) is strictly supermodular. Thus, by
Lemma 1, we establish that every selection from the optimal effort correspondence is
nondecreasing, using monotone comparative statics results (Fact 1 in the Appendix).
The result follows from single-peakedness of ∆I, with a peak at x0, established in
Lemma 6 in the Appendix. �

By our result, every selection from the optimal effort correspondence exhibits cutoff
outside-option types, given an attention cost type. In particular, extreme types — whose
outside option is above or below the cutoffs — do not exert any effort.

3.3 Sender’s Value of an Information Policy

We now express the Sender’s problem as a maximization by choice of a feasible informa-
tion policy, using the previous results on the extensive margin. First, we describe the
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extensive and intensive margins.

Lemma 4. The Sender’s maximization problem is given by:

sup−
∫
T
e(t)∆I ′(ζ−t ) dH(t) (5)

s.t. I ∈ I and e(t) ∈ E(∆I(ζt), λt) for all t ∈ T. (6)

Proof. Letting G be the marginal CDF of information cost consistent with H. Sender’s
value of I, given e(ζ, λ) ∈ E(∆I(ζ), λ) for all (ζ, λ) ∈ T , is:∫

[0,1]

∫
[0,1]

(1− I ′(ζ−)− [ζ ≤ x0])e(ζ, λ) dH(ζ|λ) + (1−H(x0|λ)) dG(λ),

because type-t Receiver chooses action 1 when indifferent, by Sender-optimality. The
Lemma follows after normalizing Sender’s expected payoff from IF to 0, and the
observation that: 1− [ζt ≤ x0] = I ′

F
(ζ−). �

The Sender’s value of the information policy I depends on I in two ways: the
intensive and the extensive margin of Bayesian Persuasion. First, the probability that
threshold type c chooses action 1 is the probability that the posterior mean is higher
than her outside option c: 1 − I ′(c−). We note that what matters for Sender is not
the probability of action 1, but the degree to which the information policy changes the
prior action decisions towards action 1. Thus, to 1− I ′(c−) we subtract [c < x0], and
we note that: 1 − I ′(c−) − [c < x0] = −∆I ′(ζ−). Second, a Receiver’s type updates
her beliefs with probability equals to her effort decision. The next result re-writes the
Sender’s problem in way to shows that Sender is effectively allocating information to
Receiver’s types, without smoothness assumptions.

Lemma 5. Let H admit a PDF h that is decomposed as: h(ζ, λ) = hζ|λ(ζ|λ)hλ(λ), and
let the conditional PDF hζ|λ admit a derivative with respect to ζ, h′ζ|λ. The Sender’s
maximization problem is given by:

max
I∈I
−
∫

[0,1]

∫
[0,1]

V (∆I(ζ), λ)h′ζ|λ(ζ|λ)hλ(λ) dζ dλ. (7)

Proof. See Section C in the Appendix. �

Under the hypotheses of this Lemma, we define the Sender’s value of an information
policy I as v(I), which is the maximand in the optimization above. And we say that an
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information policy I is optimal if it solves the maximization in 7. From the above result,
we know that Sender prefers to allocate (Blackwell) informativeness to a Receiver’s type
(ζ, λ) so long as the measure induced by h′ζ|λ(ζ|λ)hλ(λ) is positive, and he prefers to
not allocate informativeness to types such that h′ζ|λ(ζ|λ)hλ(λ) is negative. In the next
section, we make use of this intuition to solve for the optimal signal in applied models.

Remark 2. Shishkin (2019) uses a similar information-allocation intuition, in a model
without the extensive margin because Receiver’s attention is costless.

4 Applications

4.1 Single-Peaked Distribution of Receiver’s Outside Option

In applications, it’s common to assume that the distribution of Receiver’s outside option
is single-peaked (Shishkin (2019); Gitmez and Molavi (2020), and also particular cases
considered by Kolotilin (2018); Lipnowski et al. (2022b)).

Assumption 2 (Single-Peakedness of Outside Option Distribution). (1) The atten-
tion cost λ is independent of threshold c, and distributed according to the CDF
H.

(2) The distribution of the threshold ζ admits an absolutely continuous quasiconcave
PDF f , with CDF F .

4.1.1 Optimality of Upper Censorships

Under Assumption 2, the two dimensions of Receiver’s type are independently distributed
and h′ζ|λ(ζ|λ) is nonpositive before a peak threshold type, and nonnegative after the
peak (Lemma 5). Thus, it is optimal to reveal a lot of information through low posterior
means, and not much information through high posterior means. There exists a class of
signals that achieve this “information allocation,” the class of upper-censorship signals.
An upper-censorship signal implies full revelation conditional on the state being lower
than a cutoff, and full censorship conditional on the state being above the cutoff (Figure
1). Since we work in the space of information policies, we define an upper censorship as
an information policy which is induced by an upper-censorship signal.
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Definition 1. The θ? upper censorship is the unique information policy Iθ? ∈ I such
that:

Iθ?(x) =


IF0(x) , x ∈ [0, θ?]

IF0(θ?) + (x− θ?)F0(θ?) , x ∈ (θ?, x?]

IF (x) , x ∈ (x?,∞),

where x? =
∫ 1
θ? θ d F0(θ)

1−F0(θ?) .

The next result shows that upper censorships are optimal information policies under
independent cost and threshold types, whenever threshold types are single-peakedly
distributed.

Theorem 2. Let Assumption 2 hold. There exists a θ? ∈ Θ such that the θ? upper
censorship is an optimal information policy.

Proof. Section C.1 in the Appendix �

A reading of this result is as a revelation principle result. In particular, in order to
maximize Sender’s payoff, Sender can focus on upper censorships under single-peakedness
assumptions. A similar result can be proved using single-dipped distributions, where
“lower censorships" arise as optimal signals. In light of Theorem 1, we know that the
study of upper censorships informs us about properties of persuasion mechanisms.
Theorem 1 nests many known results about the optimality of upper censorships in
models without Receiver’s private information, or effort cost. The next remark discusses
uniqueness issues.

4.1.2 Welfare Analysis

Does Receiver benefit from her attention cost? In particular, Receiver’s inattentiveness
may act as a bargaining power: Sender is forced to increase the informativeness of his
signal to induce Receiver to pay attention. This observation holds without Receiver’s
private information, as we establish in the Appendix (Section C.3). In this section, we
assume that k is linear: k(e) = κe, κ > 0. In order to isolate the effect of each of the two
dimensions of Receiver’s private information, we ask whether Receiver is better off as
her attention cost λ increases in two separate cases: (1) when Sender knows Receiver’s
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outside option, and (2) when Sender knows Receiver’s attention cost. In the first case,
we study an increase of the distribution of the attention cost in a stochastic order.

The next result characterizes the optimal upper censorship with known action
threshold.

Proposition 2. Let the distribution of attention cost admit a log-concave CDF with
support [0, κ̄], and a continuous PDF, with κ̄ > 1− x0, and the outside option be known
to Sender. Moreover, let’s assume that k is linear: k(e) = κe. There exists a solution
to the Sender’s problem that is a θ upper censorship, where θ ∈ {0, θ?, ζ} and θ? solves:

(1− F0(θ))(ζ − θ) = (χ(∆Iθ(ζ)))−1

Proof. Without loss of generality: κ = 1 and

K(λ) = exp
(
−
∫ κ̄

λ
χ(t) dt

)
,

for some χ : (0, κ̄) → R+ such that:
∫ κ̄
λ χ(t) dt < ∞ and limλ→0

∫ κ̄
λ χ(t) dt = ∞. Our

primitive is the nonincreasing reverse hazard rate χ. Without loss of optimality, Sender
maximizes his payoff by choice of an upper censorship (see Section C of the Appendix).
In particular, Sender’s optimization is:

max
I∈Iu

(
1− I ′(ζ−)

)
K(∆I(ζ)),

where Iu ⊆ I is the collection of upper censorships. Suppose there exists a solution
I ∈ Iu, such that I = Iθ? , for some θ? ∈ (0, 1). By definition of I, at y = I(ζ) the next
condition holds:

IF0(θ?) + F0(θ?)(ζ − θ?)− y = 0.

By the implicit function theorem, there exists a differentiable function t:

t : (0, 1)→ (0, 1)

y 7→ θ?,
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such that:

t′(y) =


1

(ζ−t(y))F ′0(t(y)) , 0 < ζ < t(y)
1

F ′0(t(y)) , 1 > ζ ≥ t(y).

Let the value of Iθ be:

v : (0, 1)→ [0, 1]

θ 7→
(
1− I ′θ(ζ−)

)
K(∆Iθ(ζ)).

Since I ′θ?(ζ−) = F0(θ?), v is differentiable in θ at θ?. Let ζ > θ?. Using the chain rule,
the derivative of v with respect to I(ζ) is nonnegative if:

(1− F0(θ?))(ζ − θ?) ≥ (χ(∆Iθ?(ζ)))−1,

and nonpositive if:

(1− F0(θ?))(ζ − θ?) ≤ (χ(∆Iθ?(ζ)))−1.

The function θ 7→ (1 − F0(θ))(ζ − θ) is decreasing on (0, ζ), and the function θ 7→
χ(∆Iθ(ζ)) is decreasing on (0, ζ). As a result, finding the optimal θ? upper censorship
is a concave program. �

As a corollary to the above result, let full-information and no-information not be
optimal information policies when the reverse hazard rate is χ1 and when it is χ2. The
optimal upper censorship under χ1 has a lower censorship point than the optimal upper
censorship under χ2 if χ1(λ) ≤ χ2(λ) for all λ. Thus, if attention cost stochastically
increases (in the reverse hazard rate order), the optimal upper censorship is more
Blackwell informative. This result is consistent with the symmetric-information special
case of our model, where Sender knows Receiver’s type.

Is it a robust feature of Bayesian persuasion that information costs increase Receiver’s
information? Let’s consider the case of symmetric information (about Receiver’s type,
in particular). As pointed out by Wei (2021); Bloedel and Segal (2021) and Matysková
and Montes (2021), the answer is no. In particular, under mutual-information cost the
informativeness of Sender’s signal is nonmonotone in the commonly known information-
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cost parameter. To see this, consider the following two extremes. If information is
costless, Sender uses a partially informative signal, as established in the literature. If
information is prohibitevely costly, only poorly informative signals induce Receiver to
acquire some information. Our result uncovers a natural way to model larger cost in a
stochastic sense to maintain symmetric-information comparative statics, by using the
reverse-hazard rate dominance order.

Does Receiver benefit from small, known, attention cost? The next result shows
that Receiver benefits from a small, known, cost when she is privately informed about
her belief threshold for action.

Proposition 3. Let Assumption 2 hold, attention cost be known to Sender, and f be
strictly single-peaked. For a sufficiently small ε > 0:

(1) There exists a unique optimal upper censorship when λ = 0: I◦;

(2) There exists a unique optimal upper censorship when λ = ε: I?;

(3) I? is more Blackwell informative than I◦, that is: I◦(x) ≤ I?(x), x ∈ R+.

Proof. By Lemma 5, the derivative of the Sender’s value of the θ upper censorship with
respect to the θ is:

∂F0/∂θ(θ)
∫ cλ

θ
(x− θ)∂h/∂ζ(x) dx ≤ ∂F0/∂θ(θ)

∫ 1

θ
(x− θ)∂h/∂ζ(x) dx,

where the inequality is strict if λ is sufficiently small, because h is decreasing on (p, 1],
p < 1. The right-hand side of the inequality is the derivative of the Sender’s value of the
θ upper censorship with respect to the θ when λ = 0. Because h is increasing on [0, p)
and on (p, 1], p < 1, and ε is small, both sides of the above inequality are decreasing in
θ. As a result, there exists a unique optimal upper censorship either when λ = 0, and
when λ = ε.12 �

In Wei (2021), Receiver is better off with ε > 0 costs than with 0 costs, due to the
“bargaining-power” idea described above. In Matysková and Montes (2021), Receiver
is worse off with ε > 0 costs than with 0 costs, because Receiver becomes arbitrarily
informed at almost 0 cost. So, the welfare analysis of attention cost is dependent on
the information-cost model.

12Uniqueness with costless information is readily established also using the tools from Kolotilin (2018);
Kolotilin et al. (2022).
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4.2 Media Censorship

Let’s suppose a government wants people to stay home, and has control over the media.
If media start to suggest to stay home, for instance by showing how bad a pandemic
situation is, individuals may change their behavior only so long as they paid attention
to the media. Thus the government must take into account that releasing information
has two effects: information impacts behavior if individuals are attentive, a change
in the intensive margin of persuasion; information determines attention decisions, a
change in the extensive margin of persuasion. We introduce an advertising market á
la Gehlbach and Sonin (2014) in the model of Kolotilin et al. (2022), thus providing a
bridge between the two approaches to model media censorship.

Assumption 3 (Media Censorship). We assume that:

(1) Sender knows Receiver’s attention-cost type λ.

(2) k is linear, and Assumption 2 (Single-Peakedness of Outside Option) holds.

(3) Sender’s payoff is given by:

UG(a, e; ·) = ψa+ γe.

Part (1) is isomorphic to binary effort decision, which is the assumption in Gehlbach
and Sonin (2014). Part (3) makes our model’s Sender correspond to the government
of the media censorship model of Gehlbach and Sonin (2014). Part (2) is made for
tractability. ψ captures the mobilizing character of the government. A larger mobilizing
character implies that Sender cares more about the support from the population of
agents, where an agent is identified by a Receiver’s type. γ captures the size of the media
market. A larger market implies that Sender cares more about providing information,
due to larger advertising revenues. If γ = 0, we know that an upper censorship is
optimal, be previous results. Let’s recall that an upper censorship leads to poorly
informative large posterior means. Thus, because Sender with γ > 0 cares more about
the extensive margin, it may be suboptimal to provide so little information as an upper
censorship does. Let’s define a class of information policies that nests upper censorships.
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Figure 4: A bi-upper censorship is a signal that reveals low states and separates high
from very high states.

Definition 2. A bi-upper censorship is an information policy I such that, for θ1, θ2 ∈ Θ:

Iθ?(x) =



IF0(x) , x ∈ [0, θ1]

IF0(θ1) + (x− θ1)F0(θ1) , x ∈ (θ1, x1]

IF0(x1) + (x− x1)F0(x1) , x ∈ (x1, x2]

IF (x) , x ∈ (x2,∞),

where x1 =
∫ θ2
θ1
θ d F0(θ)

F0(θ2)−F0(θ1) , x2 =
∫ 1
θ2
θ d F0(θ)

1−F0(θ2) .

Proposition 4. Let Assumption 3 hold, and the peak of the PDF of outside option be
p, with p ≥ x0. There exists an optimal signal that is a bi-upper censorship.

Proof. The definition of a bi-upper censorship and the proof are in Section C.2. �

Figure 4.2 depicts a bi-upper censorship. We can interpret the assumption that the
peak of the PDF of ζ is sufficiently large as a sufficiently high disagreement between
Sender and the ex-ante Receiver (Shishkin (2019)). The current results nests the
media-censorship result in Kolotilin et al. (2022), which shows that an upper censorship
is an optimal signal without attention cost.

5 Discussion

Why do people have different information? One possibility is that information providers
target some individuals and not others, with the consequence that some receive precise
information, and others poor information. This papers investigates this phenomenon.
We show that the study of targeting mechanisms can be done using single information
policies (Section 3.1). We show that intermediate outside-option types are attentive,
while extreme outside-option types exert no attention effort (Section 3.2). This finding
points at a possible mechanism for persistence of polarization: extreme positions
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make Bayesian updating less profitable, and so information providers may not target
individuals with extreme opinions. We leverage our results to generalize optimality
properties of upper-censorship signals (Section 4.1), to show that Receiver may benefit
from her attention cost (Section 4.1.2), and to advance the study of media capture
(Section 4.2).

The current model can be extended to study more general cost structures of infor-
mation, especially in light of an application to central banking. Today, we are amidst
a second wave of the communications revolution in central banking: the inclusion of
laypeople in the audience of central bank communication (Haldane et al. (2020)).13 A
persuasion mechanism (Section 3.1) captures the strategy used by the European Central
Bank and the Bank of England.14 These institutions use “layered communication:”
reports with a simpler, and less precise, part, and a complex, and more precise, part.
The idea is that experts and non-experts self-select into the appropriate information.
For this application of my model, Theorem 1 has a dual interpretation. On the one
hand, it allows to study the extensive margin of layered communication using a ficti-
tious simple, one-layer, communication. On the other hand, it suggests that layered
communication has limited advantages. However, my model of attention effort does not
capture the richness of real-world information-processing limits. In particular, more
Blackwell information implies an increase in the marginal benefit of effort, but has
no impact on marginal cost of effort. Thus, by monotone comparative statics, a more
informative signal induces every Receiver’s type to exert more effort in the model. This
observation permits to study the extensive margin of persuasion of a privately informed
receiver, at the cost of possibly reducing the richness of the results. A more realistic
study of layered communication extends the cost structure of the current paper, so that
additional information has an impact on both costs and benefits of information.

13Recent evidence asserts that some central banks have successfully reached the general public
(Ehrmann and Wabitsch (2022)).

14“[...] The Governing Council decided to complement its monetary policy communication with
“layered” communication [...] A new visual monetary policy statement was added to explain the ECB’s
latest decision in a more attractive and simpler format, and in all 24 official EU languages. Using
storytelling techniques, relatable visuals and language, the visual monetary policy statement aims to
make the ECB’s policy decisions more accessible to non-expert audiences across the entire euro area.”
From ECB Economic Bulletin (November 2021). See Haldane and McMahon (2018), for a discussion of
the strategy of the Bank of England.
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A Mathematical preliminaries

In this section, we provide background results that we use in the next sections.

Setup ∆X is the set of all Borel probability measures on the set X . All mappings are
assumed measurable with respect to the relevant Borel σ-algebra. The function g : R2 →
R has increasing differences if g(a′, e′) − g(a′, e) ≥ g(a, e′) − g(a, e) whenever a′ ≥ a

and e′ ≥ e; g has strictly increasing differences if g(a′, e′)− g(a′, e) > g(a, e′)− g(a, e)
whenever a′ > a and e′ > e. Let’s fix two Euclidean spaces A and B, a selection from
the correspondence β : A ⇒ B is a function f : A → B such that f(x) ∈ β(x), x ∈ A.
The strong set order on 2B is defined as: S ≥ss T if max{x, y} ∈ S and min{x, y} ∈ T ,
for all (x, y) ∈ S × T , and S, T ∈ 2B. We use the following monotonicity notions for a
correspondence β : A⇒ B.

(1) β is strong set monotonic if: a′ > a implies β(a′) ≥ss β(a), for all a, a′ ∈ A.15

(2) β is nondecreasing if: a′ > a implies b′ ≥ b, for all b ∈ β(a), b′ ∈ β(a′) and
a, a′ ∈ A.16

(3) β is increasing if: a′ > a implies b′ > b, for all b ∈ β(a), b′ ∈ β(a′) and a, a′ ∈ A.

We state a result from monotone comparative statics and a version of the envelope
theorem.

Fact 1 (Monotone Comparative Statics, MCS). Let g : [0, 1]2 → R be continuous and ex-
hibit increasing differences. Let β : [0, 1] ⇒ [0, 1] such that β(a) = arg maxe∈[0,1] g(a, e), a ∈
[0, 1].

(1) β is nonempty-valued, compact-valued and strong set monotonic.

(2) supβ is a nondecreasing selection of β.

(3) If g exhibits strictly increasing differences, then β is nondecreasing, or, equivalently,
every selection from β is nondecreasing.

Proof. For a proof, see Vives (1990). �
15It is common to call “increasing”, or “increasing in the strong set order”, a correspondence β that

is strong set monotonic here.
16It is common to call “strongly increasing”, or “monotone”, a correspondence β that is nondecreasing

here.
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Fact 2 (Envelope Theorem, ET). Let g : R2 → R be continuous and exhibit increasing
differences. Let the derivative with respect to the variable a, ∂g/∂a(·, e), exist, be
bounded and nonnegative for all e ∈ [0, 1]. Let’s define β : [0, 1] ⇒ [0, 1] such that
β(a) = arg maxe∈[0,1] g(a, e), and V (a) = maxe∈[0,1] g(a, e), t ∈ [0, 1]. The following
hold:

(1) V is absolutely continuous, nondecreasing and convex on [0, 1].

Proof. V is absolutely continuous and nondecreasing. The assumptions of the envelope
theorem, see Theorem 2 in Milgrom and Segal (2002), are satisfied. In particular, V
is absolutely continuous because ∂g/∂a(·, e) exists and is bounded on [0, 1], so that
g(·, e) is absolutely continuous for all e ∈ [0, 1]. Because ∂g/∂a is nonnegative, V is
nondecreasing, which follows from the integral representation of V .

V is convex. Let supβ =: e?. e? is a well-defined nondecreasing selection from β, by
Fact 1. ∂g/∂a(a, e) is nondecreasing in a, by assumption, and is nondecreasing in e by
increasing differences (Fact 1). e? is nondecreasing (Fact 1), so a 7→ ∂g/∂a(a, e?(a)) is
nondecreasing. The mapping a 7→ ∂g/∂a(a, e?(a)) is a selection from the subgradient
of a convex function U , defined up to a constant term (Theorem 24.8, Rockafellar
(1970), noting that the mapping is uni-dimensional). By the integral representation of
V (Milgrom and Segal, 2002):

V (a1) = V (0) +
∫ a1

0
∂g/∂a(ã, e?(ã)) dã, a1 ∈ [0, 1].

We have U(a) = V (a) for all a ∈ [0, 1], because the convex function U admits an integral
representation that is the same as that of V on [0, 1]. �

We state a result from convex analysis.

Fact 3 (Subdifferential of Convex Functions). Let A ⊆ R, f : A→ R be convex, and
ϕ : R→ R be a nondecreasing convex function on the range of f .

(1) The composition ϕ ◦ f is convex.

(2) If y is in the domain of ϕ ◦ f , then:

{αu : (α, u) ∈ ∂ϕ(f(y))× ∂f(y)} = ∂(ϕ ◦ f)(y).
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Proof. For a proof of (1) and (2), see, respectively, Proposition 8.21 and Corollary 16.72
in Bauschke et al. (2011).17 �

Feasible CDF’s Let D be the collection of CDF’s over [0, 1]. Let F0 ∈ D be absolutely
continuous with

∫ 1
0 θ dF0(θ) =: x0. F0 is the CDF of the state, θ. Let S be the collection

of all signals about the state. A CDF F is feasible if there exists a signal s about the
state θ that induces F as the marginal CDF of E{θ|s}. In order to describe the set of
feasible CDF’s, let’s define the information policy of a CDF F ∈ D as

IF : R+ → R+

x 7→
∫ x

0
F (y) dy.

By Blackwell’s theorem, a CDF F is feasible if, and only if: F is a mean preserving
contraction of F0. We define the set of feasible CDF’s as

F := {F ∈ D : IF (1) = IF0(1), and IF (x) ≤ IF0(x) for all x ∈ R+}.

Feasible information policies In order to use information policies to represent
feasible CDF’s, we use the following notation. Let (·)+ := max{·, 0}, id be the identity
function id: x 7→ x and F := (id − θ0)+, we note that F ∈ F . Let’s define the set of
feasible information policies:

I := {I : R+ → R+ : I convex, and IF0(x) ≥ I(x) ≥ IF (x) for all x ∈ R+}.

In what follows, we refer to information policies, dropping the feasibility qualifier. For
a function I: we denote the right derivative and the left derivative by, respectively, ∂+I

and ∂−I (or I ′(x−)), and the subdifferential of I by ∂I. For two convex functions, the
subdifferential of I + J at x is the (Minkowski) addition of ∂I(x) and ∂J(x), we denote
it by ∂(I + J)(x). Let I ∈ I, then: (i) the right-derivative of I at a point x exists for
all x ∈ [0, 1], and (ii) the left-derivative of I at x ∈ [0, 1] exists for all x ∈ [0, 1], once
I is extended to take value 0 at x < 0. We define I on nonnegative reals to simplify

17For a different presentation of the chain rule for subdifferential calculus, see Proposition 1 and 2 in
Lemaire (1985) (see also Remark 2, Case 3, part (ii)), which is less general even though it suffices for
the current setup.
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the following exposition, so when we refer to ∂−I(x) we implicitely assume that I is
extended to take value 0 on (−∞, 0). The next result allows us to represent feasible
CDF’s with information policies.

Fact 4. The following hold:

(1) If F ∈ F , then IF ∈ I;

(2) If I ∈ I, then I ′ ∈ F , once I is extended to take value 0 at x < 0.

Proof. For a proof, see Gentzkow and Kamenica (2016). �

Information allocations We define the operator ∆ as:

∆: I 7→ I − IF .

And we denote by ∆I the composite function ∆(I). It holds that 0 ≤ ∆I(x) ≤ 1− x0,
x ∈ R, by definition of I. The set of information allocations is:

A := {A : R+ → R+ : A|[0,x0] is convex, A|[x0,1] is convex,

A is continuous at x0, A(x) ≤ IF0(x)− IF (x) for all x ∈ R+,

some m ∈ [0, 1), m′ ∈ [m, 1] exist such that: ∂−A(x0) = m,

∂+A(x0) = m′ − 1}.

The next lemma shows that ∆: I → A, and information allocations represent informa-
tion policies.

Lemma 6. The following hold:

(1) If A ∈ A, then: A+ IF ∈ I.

(2) If I ∈ I, then ∆I ∈ A.

Proof. The only non trivial step is to show convexity of A+ IF . We note that m, in
the definition of A, is a subdifferential of (A+ IF )(x0). Therefore, the function A+ IF

is convex on [0, x0], convex on [x0,∞), and subdifferentiable at x0. Global convexity
follows. �
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B Proofs for Section 3.1

In this section, we prove Theorem 1 in a more general setup than that of Section 3.1. We
define g : [0, 1]× [0, 1]→ R to be a continuous function, with bounded and nonnegative
derivative in the first argument g1. We also assume that g1(a, e) > 0 for all e ∈ (0, 1].
Type-t Receiver’s utility given the information policy I and effort e is:

g(∆I(ζt), e)− λtk(e).

The model of Section 3.1 corresponds to the particular case in which g(a, e) = ae.

A persuasion mechanism is a menu of information policies (Ir)r∈R, with Ir ∈ I for
all types r ∈ R, and R = T . A persuasion mechanism (Ir)r∈R is incentive compatible
(IC) if:

t ∈ arg max
r∈R

{
max
e∈[0,1]

g(∆Ir(ζt), e)− λtk(e)
}
, for all types t ∈ T .

An IC persuasion mechanism (Ir)r∈R and an information policy I induce the same effort
distribution if:

arg max
e∈[0,1]

g(∆It(ζt), e)− λtk(e) ⊆ arg max
e∈[0,1]

g(∆I(ζt), e)− λtk(e) for all t ∈ T . (8)

Let’s define

E(∆Ir(ζt), λt) := arg max
e∈[0,1]

[g(∆Ir(ζt), e)− λtk(e)].

An IC persuasion mechanism (Ir)r∈R and an information policy I induce the same
action distribution if:

∂−It(ζt) = ∂−I(ζt), for all t ∈ T such that: E(∆It(ζt), λt) ∩ (0, 1] 6= ∅.

Theorem 1 is a corollary of the next result.

Theorem 3. For every IC persuasion mechanism (Ir)r∈R there exists an information
policy J such that (Ir)r∈R and J induce the same effort and action distributions.

Proof. Let’s fix an IC persuasion mechanism (Ir)r∈R. First, we define an information
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policy J , and then we show that it induces the same effort and action distributions as
(Ir)r∈R.

Definition of information policy J . Let’s fix an IC persuasion mechanism (Ir)r∈R.
Let’s define the function I : [0, 1]→ R+ as follows:

I(c) := sup
r∈R

Ir(c), c ∈ [0, 1] (9)

I(c) is well defined because 0 ≤ Ir(c) ≤ IF0(c) ≤ 1− x0, c ∈ [0, 1]. I is the pointwise
supremum of a family of convex functions, so I is convex. It holds that IF (c) ≤ I(c) ≤
IF0(c), c ∈ [0, 1], because Ir ∈ I, r ∈ R. We extend I on (1,∞), so that the resulting
extended function J : R+ → R+ is an information policy, by defining J(c) = IF0(c),
c ∈ (1,∞), and J(c) = I(c), c ∈ [0, 1]. We have that J ∈ I.

Equivalence of effort distribution. Let’s define

V (∆Ir(ζt), λt) := max
e∈[0,1]

[g(∆Ir(ζt), e)− λtk(e)]

and E(∆Ir(ζt), λt) := arg max
e∈[0,1]

[g(∆Ir(ζt), e)− λtk(e)],

in which V (·, λt) is well-defined and E(·, λt) is nonempty-valued.
There are two cases.

(1) E(∆It(ζt), λt) ∩ (0, 1] 6= ∅.

(2) E(∆It(ζt), λt) = {0}.

First, we consider case (1). By ET, we have:

V (a, λt)− V (∆It(ζt), λt) =
∫ a

∆It(ζt)
g1(ã, e(ã)) dã,

for a selection e of E(·, λt). Because g exhibits strictly increasing differences, MCS
implies that e(ã) ≥ e(∆It(ζt)) if ã ≥ ∆It(ζt). By the assumption that g1(ã, ·) > 0 on
(0, 1] for all ã

V (a, λt)− V (∆It(ζt), λt) > 0, for all a > ∆It(ζt).
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Thus, in case (1) IC implies that

sup
r∈R

∆Ir(ζt) = ∆It(ζt).

Let’s consider case (2), and, towards a contradiction, let’s assume 0 /∈ E(∆J(ζt), λt).
By Berge’s Theorem, E(·, λt) is upper hemi continuous. Therefore, there exists a ∈
(∆It(ζt),∆J(ζt)) and f > 0 such that f ∈ E(a, λt). By the assumption that g1(ã, ·) > 0
on (0, 1] for all ã

V (∆J(ζt), λt)− V (a, λt) > 0.

The above inequality and ET imply that

V (∆J(ζt), λt)− V (∆It(ζt), λt) > 0.

Thus, in case (2) we also have that IC implies

sup
r∈R

∆Ir(ζt) = ∆It(ζt).

The above equality contradicts E(∆J(ζt), λt) 6= E(∆It(ζt), λt).
Therefore, J induces the same effort distribution as (Ir)r∈R.

Equivalence of action distribution. Let s be such that E(∆Is(ζs), λs) ∩ (0, 1] 6= ∅.
We have Is(ζs) = J(ζs), be the previous claims. Let’s suppose that ∂−Is(ζs) 6= ∂−J(ζs)
for some type t ∈ T . Because Is and J are information policies, they have the same
extension on (−∞, 0), so that ζs > 0. By convexity of information policies on R+

and ζs > 0, we have that ∂−Is(ζs) and ∂−J(ζs) are well-defined. Thus, ∂−Is(ζs) is a
subgradient of Is at ζs, and ∂−Is(ζs) is not subgradient of J at ζs, in particular, there
exists x ∈ R such that

Is(x) ≥ Is(ζs) + ∂−Is(ζs)(x− ζs) > J(x),

which implies Is(x) > J(x). The last inequality contradicts the definition of J . �
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C Optimal signal characterization

First, we prove three lemmata.

Proof of Lemma 7 By Lemma 4, we define the Sender’s problem as follows. We say
that the value of the Sender’s problem is:

sup
I,e

∫
[0,1]

∫
[0,1]

(1− I ′(ζ−)− [ζ ≤ x0])e(∆I(ζ), λ) dH(ζ|λ) dG(λ)

s.t. I ∈ I and e(∆I(ζ), λ) ∈ E(∆I(ζ), λ) for all (ζ, λ) ∈ [0, 1]2.

We define ṼS : I → R as the maximand in the above optimization, which, in general,
depends on the selection e. Lemma 7 is a corollary to the next result.

Lemma 7. Let’s assume thatH admits a conditional PDF of ζ given λ that is absolutely
continuous as a function of ζ. Then, the value of the Sender’s problem is:

sup
I∈I

∫
[0,1]

∫
[0,1]

V (∆I(ζ ′), λ) ∂
∂ζ
hζ|λ(ζ ′|λ) dζ ′ dG(λ) + C,

where C is a constant term that does not depend on I and e.

Proof. We note that, by the absolute continuity hypothesis on the conditional PDF of
ζ given λ, we have that ∂

∂ζhζ|λ(·|λ) =: h′ζ|λ(·|λ) exists at every ζ, except on a countable
subset of [0, 1], for all λ ∈ [0, 1]. We define

VS(I;λ) := −
∫

[0,1]
e(∆I(ζ), λ)∆I ′(ζ−)hζ|λ(ζ|λ) dζ,

in order to express ṼS as follows:

ṼS(I) =
∫

[0,1]

{
−
∫

[0,1]
e(∆I(ζ), λ)∆I ′(ζ−)hζ|λ(ζ|λ) dζ

}
dG(λ).

=
∫

[0,1]
VS(I;λ) dG(λ).

We now apply the Envelope Theorem (Fact 2), and we define A = ∆I. In particular,
we let ∂V (A(ζ), λ) be the subdifferential of V (·, λ) computed at A(ζ), and we use
V1(A(ζ), λ) := e(∆I(ζ), λ) ∈ ∂V (A(ζ), λ). Given these results, we have the following
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equality.

VS(I;λ) = −
∫

[0,x0]
V1(A(ζ), λ)A′(ζ−)hζ|λ(ζ|λ) dζ −

∫
(x0,1]

V1(A(ζ), λ)A′(ζ−)hζ|λ(ζ|λ) dζ.

By Fact 3, part (2), for a selection d from the subdifferential of V (·, λ) ◦A(·), we have:

VS(I;λ) = −
∫

[0,x0]
d(ζ)hζ|λ(ζ|λ) dζ −

∫
(x0,1]

d(ζ)hζ|λ(ζ|λ) dζ.

In particular, the equality holds because V (·, λ) is nondecreasing and convex, and the
definition of A as an information allocation implies that A is convex on [0, x0] and
on (x0, 1], so that we apply Fact 3, part (2), on [0, x0] and on (x0, 1] separately. By
continuity of the PDF, we have:

VS(I;λ) = −
∫

[0,1]
d(ζ)hζ|λ(ζ|λ) dζ.

By Fact 3, part (1), the composition V (·, λ) ◦A(·) is a convex function. Thus, V ◦A is
the integral of any selection from the subdifferential of V (·, λ) ◦A(·) (see, e.g., Corollary
24.2.1 in Rockafellar (1970)). Then, the next equality follows from integration by parts.
In particular, the next equality holds because: (i) the composition V (·, λ) ◦ A(·) is a
convex function, and (ii) hζ|λ(·|λ) is absolutely continuous by hypothesis.

VS(I;λ) = −V (A(1), λ)hζ|λ(1|λ) + V (A(0), λ)hζ|λ(0|λ)+

+
∫

[0,1]
V (A(ζ), λ)h′ζ|λ(ζ|λ) dζ.

The claim follows, because A(1) = 0 = A(0). �

The next lemma shows a property of upper censorships. A similar lemma is used in
Lipnowski et al. (2021).

Lemma 8. Let I ∈ I. There exists an information policy Iu ∈ I such that:

(CONS) Iu(ζ) = I(ζ).
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(IMPR) Iu′(ζ−) ≤ I ′(ζ−) and:

Iu(x)− I(x) ≥ 0, x ∈ [0, ζ]

Iu(x)− I(x) ≤ 0, x ∈ [ζ,∞].

.

(CENS) For some θu ∈ [0, ζ], Iu is the θu upper censorship.

Proof. If I = IF , the proof is complete, letting Iu be the 0 upper censorship. Let
I 6= IF . Let’s define M := {m ∈ [0, I ′(ζ−)] | I(ζ) + m(x − ζ) ≤ IF0(x) for all x ∈
[0, ζ]}, and m := minM . We construct an information policy starting from the line
x 7→ I(ζ) +m(x− ζ), by means of the next three claims.

m is well-defined. (i) M is nonempty, because 0 ≤ I ′(ζ−) ≤ 1 (which follows from
I ∈ I), I ′(ζ−) ∈ ∂I(ζ−) and I(x) ≤ IF0(x) for all x; (ii)M is closed, becase the mapping
m 7→ I(ζ) +m(x− ζ) is a continuous function of m for given x, ζ, I; (iii) M is bounded
because if m ∈M then 0 ≤ m ≤ I ′(ζ−), and I ′(ζ−) ≤ 1 because I ∈ I.

There exists a unique θu ∈ [0, ζ] such that IF0(θu) = I(ζ)+m(θu−x). Suppose there
does not exist such a θu; then there exists ε > 0 such that: I(ζ)+(m−ε)(x−ζ) < IF0(x)
for all x ∈ [0, ζ] (if ε is sufficiently small) and m− ε ∈M (because I 6= IF and ζ > θ0,
if ε is sufficiently small). We reach a contradiction with the definition of m. Uniqueness
follows from convexity of IF0 .

m ∈ ∂IF0(θu) and I(ζ) +m(x− ζ) = IF0(θu) + (x− θu)F0(θu) for all x. First, we
argue that m ∈ ∂IF0(θu). By convexity of IF0 and definition of θu, x 7→ I(ζ) +m(x− ζ)
is tangent to IF0 at θu. Thus, m is a subdifferential of IF0 at θu. Now, we argue
that I(ζ) +m(x− ζ) = IF0(θu) + (x− θu)F0(θu) for all x. m = F0(θu) because IF0 is
continuously differentiable. The equality follows from x 7→ I(ζ) +m(x− ζ) being equal
to IF0 at x = θu.

Let’s find an information policy that satisfies (CENS). We define the following
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function.

Iu : R+ → R+

x 7→


IF0(x) , x ∈ [0, θu]

I(ζ) +m(x− ζ) , x ∈ (θu, ζ]

max{I(ζ) +m(x− ζ), IF (x)} , x ∈ (ζ,∞).

To show (CENS) it suffices to show that: (i) for some xu ∈ [0, 1]

Iu(x) =


IF0(x) , x ∈ [0, θu]

IF0(θu) + (x− θu)F0(θu) , x ∈ (θu, xu]

IF (x) , x ∈ (xu,∞),

and (ii) Iu ∈ I. We claim that (i) holds by means of the next three claims.
Some xu ∈ [ζ, 1] exists such that:

I(ζ) +m(x− ζ) ≥ IF (x) , x ∈ [0, xu] (10)

I(ζ) +m(x− ζ) ≤ IF (x) , x ∈ [xu, 1]. (11)

Let’s note that: (a) I(ζ) ≥ IF (ζ); (b) by m ∈ ∂IF0(θu) and IF0(1) = IF (1), we have
that IF (1) ≥ I(ζ) +m(1− ζ), and (c) the two functions, x 7→ I(ζ) +m(x− ζ) and IF ,
are affine with slopes, respectively, m and 1, such that: m ≤ 1. We proceed to verify
that (ii) holds, i.e. Iu ∈ I. (ii) follows from the next two claims.

IF (x) ≤ Iu(x) ≤ IF0(x) for all x ∈ R+ and Iu locally convex at all x /∈ {θu, xu}. If
x ∈ [0, θu), Iu is locally convex and IF (x) ≤ Iu(x) ≤ IF0(x). If x ∈ (θu, ζ), Iu is affine,
IF (x) ≤ I(x) ≤ Iu(x) by construction of Iu and definition of I, and Iu(x) ≤ IF0(x)
by m ∈ ∂IF0(x). If x ∈ [ζ,∞), I is locally convex (because it is the maximum of
affine functions), IF (x) ≤ Iu(x) by construction of Iu, Iu(x) ≤ IF0(x) because: (i)
m ∈ ∂IF0(ζ) and (ii) IF (x) ≤ IF0(x). To verify global convexity, it suffices to verify the
next claim.

Iu is subdifferentiable at x ∈ {θu, xu}. First, we argue that m is a subdifferential of
Iu at θu. This follows from the fact that the slope of Iu at θu is a subdifferential of IF0

at θu, and Iu(θu) = IF0(θu). On [0, θu], Iu = IF0 , and on [θu,∞] Iu is above the line
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x 7→ I(ζ) +m(x− ζ). Thus, m ∈ ∂Iu(θu). Second, the fact that m is a subdifferential
of Iu at ζ follows from the claim in (10).

We have shown that (CENS) holds. (IMPR) and (CONS) hold by construction. �

C.1 Proof of Proposition 2

Proof. If an optimal information policy exists, the Proposition follows from Lemma 5
and Lemma 8. Existence is readily established using the tools from Kleiner et al. (2021),
observing that the maximand is a continuous functional (Lemma 5 and the envelope
theorem in Fact 2). �

C.2 Proof of Proposition 4

We prove several lemmata.

Lemma 9. Let I ∈ I such that p ≥ c(∆I), there exists another information policy I?

such that:

(FEAS) I? is feasible: I? ∈ I,

(EM) I? produces the same extensive margin as I: c(∆I?) = c(∆I), c(∆I?) = c(∆I).

(IMPR)

∆I?(x) ≥ 0, for all x ∈ [c(∆I), c̄(∆I)]

.

(CENS) There exist x`, θ`, θm, xm such that 0 ≤ x` ≤ θ` ≤ θm ≤ xm ≤ 1, and:

I?(x) =



IF (x) , x ∈ [0, x`]

IF0(θ`) + F0(θ`)(x− θ`) , x ∈ (x`, θ`]

IF0(x) , x ∈ (θ`, θm]

IF0(θm) + F0(θm)(x− θm) , x ∈ (θm, xm]

IF (x) , x ∈ (xm,∞].

Proof. We use the following notation: c(I − I) =: c, c(I − I) =: c. In the first step,
we prove the lemma in the case where there is a feasible information policy that is a
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straight line between the points p := (c, I(c)) and p := (c, I(c)). In the second step, we
prove the lemma in the case where there is not a feasible information policy that is a
straight line between the points p and p.

First Step. Let’s define the line line i such that x 7→ I(c) + λ∗(x − c), with slope
λ∗ := I(c)−I(c)

c−c . We claim that i?(x) := max{i(x), I0(x)} satisfies all properties. It is
FEAS by hypothesis. It is EXT because i(c) = I(c) and i(c) = I(c). It is IMPR because
I is convex and i? is EXT. It is CENS with θ` = θm = xm, because: (i) EXT of i?

and convexity of I imply that i? is affine in [c, c], (ii) λ∗ ∈ [0, 1] and EXT imply, with
I ∈ I0 that there are intersections x̃1, x̃2, with x̃1 ≤ c ≤ c ≤ x̃2, where: i?(x) = I(x) if
x ∈ [0, x̃1] ∪ [x̃2, 1].

Second Step. In this case, i? is not FEAS. Since i? satisfies FEAS at x if x ≤ c and
if x ≥ c, there is a point x∗ ∈ (c, c) such that i(x∗) > IF0(x∗).

L := {λ ∈ [I ′(c), 1] | I(c) + λ(x− c) ≤ IF0(x) for all x ∈ [c,∞)},

M := {λ ∈ [0, I ′(c)] | I(c) + λ(x− c) ≤ IF0(x) for all x ∈ [0, c̄]}.

` := maxL, m := minM . We define two lines:

y` is: x 7→ I(c) + `(x− c)

ym is: x 7→ I(c̄) +m(x− c̄).

We prove a lemmata.

Lemma 10. `,m are well-defined.

Proof. L is nonempty because I ′(c) ∈ L, which follows from: (i) IF0(x) ≥ I(x) for all
x and (ii) I ′(c) ∈ ∂I(c). M is nonempty because I ′(c) ∈ M , which follows from: (i)
IF0(x) ≥ I(x) for all x and (ii) I ′(c) ∈ ∂I(c). L,M are closed because IF0 is continuous.
L,M are bounded. �

Lemma 11. that there exists a unique pair of numbers (θ`, θm) ∈ [c, 1] × [0, c̄] such
that:

y`(θ`) = IF0(θ`)

ym(θm) = IF0(θm)
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Proof. Suppose there does not exists such a `. There exists a sufficiently small ε > 0
such that: (i) `+ ε ∈ L and (ii) I(c) + (`+ ε)(x− c) < IF0(x) for all x ∈ [c,∞); we note
that ` = 1 contradicts ` ∈ L because I ′F0

(x) < 1 if x < 1. Uniquenss of ` follows from
convexity of IF0 .

Suppose there does not exists such an m. There exists a sufficiently small ε > 0
such that: (i) ` − ε ∈ M and (ii) I(c̄) + (m − ε)(x − c̄) < IF0(x) for all x ∈ [0, c̄); we
note that m = 0 contradicts I 6= IF . Uniquenss of m follows from convexity of IF0 . �

Lemma 12. θ` ≤ θm.

Proof. Let’s prove that it suffices to show that: ` ≤ m. Suppose ` ≤ m, then: since
` ∈ ∂IF0(θ`) and m ∈ ∂IF0(θm), and IF0 is strictly convex, we have: θ` ≤ θm.

First, we show that ` ≤ λ∗. Suppose that: ` > λ∗. Then: I(x) + `(x − c) >
I(c) + λ∗(x− c) for all x > c. Therefore, since ` > 0:

IF0(x∗) ≥ I(c) + λ∗(x∗ − c).

We reached a contradiction with the definition of x∗, so: ` ≤ λ∗.
Let’s prove that m ≥ λ∗. Suppose m < λ∗. Then: I(x) +m(x− c) > I(c) +λ∗(x− c)

for all x < c. Therefore, since m > 0:

IF0(x∗) ≥ I(c) + λ∗(x∗ − c).

We reached a contradiction with the definition of x∗, so: m ≥ λ∗. Therefore, we have
m ≥ λ∗ ≥ `, which implies θm ≥ θ`. �

We define a candidate I? and we verify that it has the desired properties.

I?(x) :=


max{IF (x), I(c) + `(x− c)} , x ∈ [0, θ`]

IF0(x) , x ∈ [θ`, θm]

max{IF (x), I(c) +m(x− c)} , x ∈ [θm,∞]

Let’s first verify that I? is well-defined. We know that ` ∈ ∂IF0(θ`) and m ∈ ∂IF0(θm).
Since I(c) + `(0− c) < IF0(0) and I(c) ≥ IF0(c), max{IF0(x), I(c) + `(x− c)} = IF0(x)
if x < x0; and max{IF0(x), I(c) + `(x − c)} = I(c) + `(x − c) if x > x0; for some
x0 ∈ [0, θ`]. In a similar way, we can show that there exists a x2 ∈ [θm, 1] such that:
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max{IF0(x), I(c) +m(x− c)} = IF0(x) if x > x2, and max{IF0(x), I(c) +m(x− c)} =
I(c) +m(x− c) if x < x2.

(CENS) follows from the definition of I? and its well-definedness, using y0 = x0, y1 = x1 ,
y2 = x3, y3 = x4, and α1 = λ1 and α2 = λ3.

(IMPR) IMPR on [c, x1] and [x3, c] follows from convexity of I, and on [x1, x3] follows
from FEAS of I in that region.

(EM) follows from I?(c) = I(c) + λ1(x− c), and I?(c) = I(c) + λ3(x− c).

(FEAS) First, I? is always above I0. Second I? is always below I0, which follows from
λ` ∈ ∂I0(x`) for all ` ∈ {1, 3}. The maximum of affine functions is convex, and
I0 is convex. Global convexity then follows if I? is subdifferentiable at x1 and
x3. We now claim that λ` ∈ ∂I?(x`) for all ` ∈ {1, 3}. This claim follows from
λ` ∈ ∂I0(x`) for all ` ∈ {1, 3}, and the fact that I0(x1) = I(c) + λ1(x1 − c) and
I0(x3) = I(c) +λ3(x3− c) (together with convexity of I? in [0, x1] and [x3, 1]). We
established that the subdifferential of I? at x1 and x3 nonempty, which finalizes
the proof that I? is globally convex.

�

Proof of Proposition 4

Proof. By the previous lemmata, to prove Proposition 4 we only need to prove the
following claim.

Let I ∈ I such that p < c(∆I), there exists another information policy I◦ such that:

(FEAS) I◦ is feasible: I◦ ∈ I,

(EM) I◦ produces the same extensive margin as I: c(∆I◦) = c(∆I), c(∆I◦) = c(∆I).

(IMPR)

∆I◦(x) ≥ 0, for all x ∈ [c(∆I), c̄(∆I)]

.
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(CENS) There exist x`, θ`, θm, xm, θu, xu such that 0 ≤ x` ≤ θ` ≤ θm ≤ x◦m ≤ xu ≤ 1, and:

I◦(x) =



IF (x) , x ∈ [0, x`]

IF0(θ`) + F0(θ`)(x− θ`) , x ∈ (x`, θ`]

IF0(x) , x ∈ (θ`, θm]

IF0(θm) + F0(θm)(x− θm) , x ∈ (θm, x◦m]

IF0(θu) + F0(θu)(x− θu) , x ∈ (x◦m, xu]

IF (x) , x ∈ (xu,∞).

The claim follows from taking I? from the previous lemmata until the point x◦m where
I? intercepts the line j: x 7→ I(c) + I ′(c)(x− c), and max{IF , j} after x◦m. �

C.3 Known ζ and κ

We assume, in this section only, that Sender knows both ζ and κ. If ζ > 1, any
information policy is optimal. If ζ ≤ θ0, IF is optimal. Let 1 ≥ ζ ≥ θ0.

The Sender’s problem is:

max
I∈I

(
1− I ′(ζ−)

)
[∆I(ζ) ≥ κ].

Lemma 13. There exists a solution to the Sender’s problem I ∈ I such that: for
θ ∈ [0, ζ], I is the θ upper censorship and:

∆Iθ ≤ κ,

with equality if θ > 0.

Proof. Let Iu := {I ∈ I : I = Iθ, for some θ ∈ [0, 1] such that θ ≤ ζ}. Suppose the
solution is not IF0 . The Sender’s problem is, without loss of optimality by lemma 8:

max
I∈Iu

(
1− I ′(ζ−)

)
[∆I(ζ) ≥ κ].

Suppose there exists a solution I ∈ Iu, such that I = Iθ? , for some θ? ∈ (0, 1). We
distinguish three cases.
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(1) If ∆I(ζ) < κ, then IF achieves the same Sender payoff. (2) If ∆I(ζ) = κ, the
lemma holds. (3) Let’s suppose ∆I(ζ) > κ. By definition of I, at y = I(ζ) the next
condition holds:

IF0(θ?) + F0(θ?)(ζ − θ?)− y = 0.

By the implicit function theorem, there exists a differentiable function t:

t : (0, 1)→ (0, 1)

y 7→ θ?,

such that:

t′(y) =


1

(ζ−t(y))F ′0(t(y)) , 0 < ζ < t(y)
1

F ′0(t(y)) , 1 > ζ ≥ t(y).

Let the value of Iθ be:

v : (0, 1)→ [0, 1]

θ 7→
(
1− I ′θ(ζ−)

)
Because I ′θ?(ζ−) = F0(θ?), v is differentiable in θ at θ?. Using the chain rule, the
derivative of v with respect to I(ζ) is:

−F ′0(t(I(ζ))) 1
(ζ − t(I(ζ)))F ′0(t(I(ζ))) ,

whenever ζ > t(I(ζ)), and −1 otherwise. It follows that we can consider without loss
solutions I ∈ Iu that satisfy: ∆Iθ(ζ) = κ and I = Iθ, or ∆I(ζ) < κ. �
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