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Abstract

This paper studies the persuasion of a receiver who accesses information
only if she exerts costly attention effort. A sender designs an experiment
to persuade the receiver to take a specific action. The experiment affects
the receiver’s attention effort, that is, the probability that she updates her
beliefs. As an implication, persuasion has two margins: extensive (effort) and
intensive (action). The receiver’s utility exhibits a supermodularity property
in information and effort. By leveraging this property, we establish a general
equivalence between experiments and persuasion mechanisms à la Kolotilin et
al. (2017). In applications, the sender’s optimal strategy involves censoring
favorable states.
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1 Introduction

In the “information age,” consumers evaluate whether information sources are worth
their attention because learning takes effort and time (Simon, 1996; Floridi, 2014).
The persuasion literature studies how a sender, such as an advertiser or media outlet,
provides information to persuade a receiver to take a specific action (Kamenica,
2019). When attention is costly, the sender faces a dual problem: the receiver can be
persuaded only if she pays attention. This paper studies a persuasion model in which
the sender’s information affects the attention effort of a receiver who privately knows
the costs and benefits of information.

The intensive margin of persuasion refers to the intensity of the sender’s influence
on the receiver’s action, given that she is attentive, whereas the extensive margin
refers to whether the receiver pays attention to the information. The study of the
extensive margin is important to understand how consumers allocate attention to
product advertisements and news content. This allocation of attention ultimately
determines the success of marketing campaigns and the spread of information across
heterogeneous audiences.

To study the extensive and intensive margins of persuasion, we introduce the
receiver’s attention decision into a persuasion game between two players: Sender (he)
and Receiver (she). In the first stage of the game, Sender designs a signal, a random
variable that is jointly distributed with an unknown state. Receiver chooses her
attention effort knowing the signal’s distribution but not its realization. By exerting
costly effort, Receiver increases probability of observing the signal’s realization. In
the last stage of the game, Receiver takes a binary action: 1 or 0. The players’
interests conflict because Receiver chooses action 1 only if she expects the state
to exceed her outside option, whereas Sender wants her to choose 1 regardless of
the state. The Receiver’s outside option and effort cost constitute her private type.
The outside option reflects the benefits of information, because it is unlikely that a
piece of information is useful if the available outside option is extremely beneficial.
Similar games are applied to study the persuasion of voters, electoral manipulation,
and credit-rating agencies (Alonso and Câmara, 2016; Gehlbach and Simpser, 2015;
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Bizzotto and Vigier, 2021).
Sender considers that increasing the correlation between the state and the signal

affects both the Receiver’s attention effort e (the extensive margin) and her action
after observing the signal (the intensive margin). Specifically, Receiver updates
her beliefs with probability e and does not update with the remaining probability.
The effort represents the acquisition of information, and its associated costs can
be monetary, such as subscription fees, or cognitive, such as mental exertion. This
attention model is less general than those with flexible information acquisition (Caplin
et al., 2022; Pomatto et al., 2023), as Receiver only chooses the probability with which
she uniformly observes every signal realization. This parsimonious model includes
asymmetric information between Sender and Receiver and a general functional form
of the cost of effort.1

In the model, the Receiver’s utility is supermodular in information and effort
(Corollary 1). In particular, the return from effort increases in a type-specific
informativeness order, which is a completion of Blackwell’s order. This property is
a complementarity between information and attention effort. Complementarity is a
feature of information acquisition that is likely to arise from sources like news outlets
and advertisements. For instance, this feature emerges when voters’ willingness to
subscribe to a newspaper increases as the newspaper dedicates more space to election
coverage, and when TV audiences pay more attention to increasingly informative
advertisements. (There is empirical evidence that product awareness increases in the
informative content of ads, e.g., Honka et al., 2017; Tsai and Honka, 2021.) This
paper analyzes the extent of persuasion in such settings.

We establish the equivalence between persuasion mechanisms and signals (Theorem
1). A persuasion mechanism is a menu of signals, one for every Receiver’s report of her
type. Under a persuasion mechanism, Receiver makes a report and chooses her effort.
Specifically, Receiver chooses the probability with which she observes the signal that
corresponds to her report. For every persuasion mechanism, there is a signal that
induces the same action and effort choices of all Receiver’s types. The key step in
the proof is to construct a signal that “allocates” to each type the same type-specific
informativeness as the mechanism. This step establishes the equivalence with respect

1Typical applications of flexible information acquisition rely on functional-form assumptions and
define cost functions over belief distributions, which this model avoids. The information cost is
“experimental” (Denti et al., 2022) because Receiver effectively chooses mixtures of full information
and null information about the Sender’s signal.
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θ is revealed m

0 1θ

(a) An upper censorship is a signal that
reveals the state θ if θ is below a thresh-
old θ and sends a single message, m, if
the state is above θ.

θ is revealed m1 m2

0 1θ1 θ2

(b) A bi-upper censorship is a signal that
reveals the state θ if θ is below a lower
threshold θ1, sends a message m1 if the
state is between θ1 and an upper thresh-
old θ2, and sends a different message m2
if the state is above θ2.

Figure 1: An upper censorship (a) and a bi-upper censorship (b), for a state θ with
support [0, 1].

to effort choices. The constructed signal also replicates Receiver’s optimal action,
by simple convex analysis given the representation of signals as convex functions
(Gentzkow and Kamenica, 2016). So, the equivalence in Kolotilin et al. (2017) arises
in the particular case of costless effort. As a result, an information provider need
not offer a fine collection of targeted experiments and the analysis of the extensive
margin can be performed with single signals without loss of generality.

We characterize the optimal signal in applications and demonstrate that it censors
high states. An upper censorship is a signal that reveals low states and pools high
states, as shown in Figure 1a. Upper censorships are optimal if the Receiver’s outside
option follows a single-peaked distribution (Theorem 3). In the costless-attention
case, the result follows directly from the shape of the noise in the Receiver’s action
given her posterior belief. The noise — perceived by Sender — is exogenous and
due to asymmetric information. Our result accounts for the endogenous randomness
due to the Receiver’s choice of effort. Moreover, any equilibrium upper censorship
provides less information if effort is costless than if effort comes at a small cost
(Proposition 1). We also consider an extension inspired by models of media capture
à la Gehlbach and Sonin (2014). In this model, Sender values Receiver’s effort
directly — i.e., not only because effort ultimately affects the Receiver’s action. “Bi-
upper censorships” are optimal signals (Proposition 2, Figure 1b). In the proof, the
additional censorship region allows Sender to separately control the extensive and
intensive margins. Overall, these results suggest that attention constraints can push
interested information providers to supply more information.
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Related literature Existing work considers persuasion without Receiver’s informa-
tion acquisition.2 The optimality properties of upper censorships are known, and the
equivalence between persuasion mechanisms and signals is shown by Kolotilin et al.
(2017). We generalize these results to the case of Receiver’s costly effort and privately
known effort cost. This paper’s model is not nested in the fruitful “mean-measurable”
paradigm because, in equilibrium, effort is a function of the entire posterior-mean
distribution, not of a single posterior mean; this observation is implied by Lemma 2
and the Sender’s maximand in Lemma B.4. So, the techniques of Kolotilin (2018)
and Dworczak and Martini (2019) do not apply.

The persuasion of an inattentive Receiver is studied without private information.
In Wei (2021), Receiver’s attention cost is posterior separable. As a result of costly
attention and symmetric information, the optimal signal is binary, and, in equilibrium,
Receiver pays full attention. In the main model of Bloedel and Segal (2021), Receiver’s
attention cost is proportional to the entropy reduction in her belief and upper
censorships are optimal signals. In a separate model, the authors study the same
effort-cost structure as in this paper. The connection with these approches is discussed
in Section 6. Certain dynamic models of persuasion include costly Receiver’s attention
(Liao, 2021; Jain and Whitmeyer, 2022; Au and Whitmeyer, 2023; Che et al., 2023),
although the focus of these binary-state models is on the intertemporal flow of
information.3

Other work studies Receiver’s information acquisition with different Sender’s
incentives or Receiver’s sources than in this paper. The literature on attention
management considers Receiver’s attention given a benevolent Sender, who maximizes
Receiver’s material payoff ignoring attention cost (Lipnowski et al., 2020, 2022).
The literature on persuasion with acquisition of “outside information” studies the
acquisition of extra information beyond what Sender provides (Brocas and Carrillo,
2007; Felgenhauer, 2019; Bizzotto et al., 2020; Matysková and Montes, 2023). The
focus is on how payoffs and information change as outside information becomes
cheaper. The belief of a psychological Receiver arises from an optimization problem,

2Inter alia: Rayo and Segal (2010); Kamenica and Gentzkow (2011); Kolotilin (2018); Dworczak
and Martini (2019). For upper censorships, see also: Gentzkow and Kamenica (2016); Kleiner et al.
(2021); Kolotilin et al. (2022); Arieli et al. (2023); Feng et al. (2024); for persuasion mechanisms, see
also Guo and Shmaya (2019).

3Related research includes the dynamic models in Knoepfle (2020) and Hébert and Zhong (2024),
and the search models in Branco et al. (2016) and Board and Lu (2018).
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which typically occurs after the signal is realized (Lipnowski and Mathevet, 2018;
Galperti, 2019; Beauchêne et al., 2019; de Clippel and Zhang, 2022; Augias and
Barreto, 2024) — and not before, as in this paper.

Outline Section 2 describes the model and Section 3 analyzes the Receiver’s equi-
librium attention and action. Section 4 describes the equivalence between persuasion
mechanisms and signals, and Section 5 considers upper censorships and applications.
Section 6 discusses alternative approaches of incorporating inattention in information
design. Omitted proofs are in Appendix B.

2 Model

2.1 Players, actions, and payoffs

Two players, Sender (he) and Receiver (she), play the following persuasion game.
Receiver chooses action a ∈ {0, 1} and effort e ∈ [0, 1], knowing her type (c, λ) ∈ [0, 1]2.
The material payoff of action a, given state θ ∈ [0, 1], is a(θ− c), and the cost of effort
e is λk(e), for a continuous function k : [0, 1] −→ R and given the Receiver’s type
(c, λ). The cutoff type c represents the opportunity cost of taking the risky action, 1,
and the attention type λ scales the effort cost. The Receiver’s utility is her material
payoff net of effort cost and is given by

UR(θ, a, e, c, λ) := a(θ − c)− λk(e).

Sender chooses a signal about the state, a measurable π : [0, 1] −→ ∆M , in which
∆M is the set of Borel probability distributions over the rich message space M .4 The
Sender’s utility is given by US(a) := a. The results in Section 4 do not depend on the
Sender’s utility, and in Section 5 we consider a linear function of a and e as Sender’s
utility.

4For this game, letting M = [0, 1] is sufficient (Appendix A.2); the representation of signals as
convex functions used in the rest of the paper is in Section 2.3.
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Sender
chooses
signal

Nature
draws

type (c, λ)

Receiver
chooses
effort e

Receiver
observes
signal

realization

Receiver
chooses
action a

Receiver
chooses
action a

with
probability

e

with
probability

1− e

Figure 2: The timeline of the game.

2.2 Information and timing

Information The state θ is distributed according to an atomless distribution
F0 ∈ D, the prior belief, with mean x0, letting D be the set of distributions over [0, 1]

identified by their distribution functions. The Receiver’s type is independent of θ
and admits a marginal distribution of the attention type λ, G ∈ D, and a conditional
distribution of the cutoff c given λ, G(·|λ) ∈ D.

Timing First, Sender chooses a signal, without knowing either the state or the
Receiver’s type (c, λ). Second, Receiver chooses effort e, knowing her type (c, λ) and
the signal. Third, Nature draws the state θ according to F0, and the signal realization
from π(θ). Afterwards, with probability e, Receiver observes the signal realization,
she updates her belief about the state using Bayes’ rule and chooses an action given
her posterior belief; with probability 1 − e, Receiver does not observe the signal
realization and chooses an action given the prior belief. The equilibrium notion is
Perfect Bayesian Equilibrium (Appendix A.2).

2.3 Information policies

Without loss, signals can be represented by the distributions of the posterior belief’s
mean induced on a Bayesian player who observes the signal realization.5 Given the
presence of Receiver’s effort, it pays off to represent signals by the integrals of such
distributions, called “information policies”.

5Signals can be represented by the their posterior-mean distributions in persuasion games that
(i) are “mean-measurable” (as this model) and (ii) have Receiver paying full attention (unlike this
model.) Appendix C.1 shows that the same equivalence holds for this model.
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x0 1
posterior mean

IF0

IF

(a) The set I is the set of convex func-
tions that lie between IF0 , corresponding
to a fully informative signal, and IF , cor-
responding to an uninformative signal, so
that I takes values in the shaded region.

x0 1
posterior mean

I

J

K

(b) Information policy I is more informa-
tive than information policy J in the Black-
well sense iff: I(x) ≥ J(x) for all x ∈ R+.
Information policies K and I are not com-
parable.

Figure 3: Panel (a) illustrates the set of information policies, panel (b) illustrates the
Blackwell’s order of information policies; the prior F0 is a uniform distribution for
these figures and the following ones.

Let’s define the information policy of F ∈ D as the function IF : R+ −→ R+ such
that

IF : x 7−→
∫ x

0

F (y) dy,

the set of feasible distributions F := {F ∈ D | IF (1) = IF0(1), IF (x) ≤ IF0(x) for all x ∈
R+}, and the set of information policies I := {I : R+ −→ R+ | I is convex, IF (x) ≤
I(x) ≤ IF0(x) for all x ∈ R+}, in which F is the distribution putting full mass at the
prior mean. Figure 3 illustrates the set I and Blackwell’s order on I. We identify
signals with information policies by the results of Gentzkow and Kamenica (2016)
and Kolotilin (2018) stated in Lemma A.1.

Hence, Sender chooses I ∈ I in the first stage of the game and the Receiver’s
posterior mean is drawn from the distribution I ′ with probability corresponding to
her effort, and is equal to x0 with the remaining probability (Figure 2).

Definition 1. An equilibrium is a tuple 〈I∗, e(·), α〉, in which I∗ ∈ I is the Sender’s
information policy, e(c, λ, I) ∈ [0, 1] is the Receiver’s effort given her type (c, λ) and
information policy I, and α(c, λ, x) ∈ [0, 1] is the probability that Receiver chooses
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action 1 given type (c, λ) and posterior mean x, in a Perfect Bayesian Equilibrium
(Appendix A.2).

Notation We let I ′(x) and ∂I(x) denote the right derivative and subdifferential of
I ∈ I at x ∈ R+, respectively. The function g : R2 −→ R exhibits strictly increasing
differences if t 7−→ g(s′, t)− g(s, t) is increasing for all s′, s ∈ R with s < s′.

3 Persuasion

3.1 Receiver’s action and effort

This section studies Receiver’s equilibrium choices for a given type (c, λ).
Given the posterior mean x, Receiver chooses action 1 if x > c and action 0 if

x < c. Because θ 7−→ UR(θ, a, e; c, λ) is affine, the Receiver’s expected utility from
choosing the action optimally given posterior mean x is

UR(x, e, c, λ) := max
a∈{0,1}

UR(x, a, e, c, λ).

To characterize the equilibrium effort, let’s define the marginal benefit of effort
given information policy I as the difference in expected utility with and without the
information contained in I:

∫
[0,1]

UR(x, e, c, λ)− UR(x0, e, c, λ) dI ′(x). The marginal
benefit of effort given I is also referred to as the value of information in the literature.
The net informativeness of information policy I is the difference between I and the
uninformative-signal information policy, IF (Figure 4a). The following result shows
that the marginal benefit of effort is given by the net informativeness evaluated at c,
using the operator ∆: I 7−→ I − IF to express the net informativeness succintly.

Lemma 1 (Net informativeness). Given information policy I and effort e, the
marginal benefit of effort is equal to the net informativeness evaluated at c, that is,∫

[0,1]

UR(x, e, c, λ) dI ′(x)− UR(x0, e, c, λ) = ∆I(c).

The net informativeness ∆I is single peaked, with a peak at the prior mean x0,
by construction, as in Figure 3b. Intuitively, extreme-cutoff types benefit the least
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x0 θ 1
cutoff (c)

I

IF
∆I

(a) The net informativeness of I at cutoff
c, ∆I(c), is obtained by subtracting the
value of the uninformative-signal informa-
tion policy at c, IF (c), to I(c). The func-
tion c 7−→ ∆I(c) is single peaked, with
peak at the prior mean x0, by construc-
tion.

c x0 θ c 1

λ

cutoff (c)

∆I

(b) The marginal benefit of effort equals
the marginal cost for cutoff types c and c,
given attention type λ (Lemma 1). Receiver
chooses effort 1 if c ∈ (c, c), and does not
exert effort if c ∈ [0, 1] \ [c, c].

Figure 4: Panel (a) illustrates the construction of the net informativeness of infor-
mation policy I, panel (b) illustrates the subset of cutoff types that exert positive
effort, given I and linear k. The information policy I is an “upper censorship” in
both panels, defined in Section 5.

from observing the signal realization because they are the most certain about the
optimal action when left at the prior belief.

The following result characterizes Receiver’s equilibrium choices.

Lemma 2 (Receiver’s rationality). If 〈I∗, e(·), α〉 is an equilibrium, then, for every
information policy I, it holds that:

1. 1−
∫

[0,1]
α(c, λ, x) dI ′(x) ∈ ∂I(c);

2. e(c, λ, I) ∈ Arg maxe∈[0,1] e∆I(c)− λk(e).

Proof. Part 1. follows from the definition of information policies and the equilibrium
properties of α, part 2. follows from Lemma 1 and the equilibrium properties of
e. QED

The takeaway of Lemma 2 is part 2., which identifies the net informativeness
of I at the Receiver’s cutoff as a sufficient statistic for her effort decision. As an
implication, the two dimensions of Receiver’s type, c and λ, represent her private
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information about, respectively, the benefit and cost of attention. Part 1. restates
the equilibrium conditions that the Receiver’s action satisfies.

3.2 Interval structure of the extensive margin

This section studies the Receiver’s choice of effort.
The Receiver’s value of information policy I, given type (c, λ) and effort e, is

Vλ(e,∆I(c)) := e∆I(c)− λk(e).6 By Lemma 2, part 2., the Receiver’s equilibrium
effort maximizes the value of the Sender’s information policy, given type (c, λ). The
value of I exhibits strictly increasing differences in net informativeness and effort by
Lemma 2.

Corollary 1 (Supermodularity). The Receiver’s value of information policy I,
Vλ(e,∆I(c)), exhibits strictly increasing differences in net informativeness ∆I(c)

and effort e.

As an implication, a more informative Sender’s information policy, in the Blackwell
sense, makes Receiver better off. In particular, we note that I is Blackwell more
informative than J iff: I(x) ≥ J(x) for all x ∈ R+. So, if I is more informative
than J , I allocates more net informativeness to every type than J . Finally, by the
increasing-differences property and the envelope theorem (Lemma C.11), Receiver is
better off facing I than J .7 The following result characterizes the set of types that
exert positive effort.

Lemma 3 (Interval structure). Let 〈I∗, e(·), α〉 be an equilibrium and define the
function eλ : c 7−→ e(c, λ, I) for information policy I and attention type λ. The set
e−1
λ ((0, 1]) is an interval if type (x0, λ) chooses positive effort, i.e., eλ(∆I(x0)) > 0,

and is empty otherwise.

Proof. Let 〈I∗, e(·), α〉 be an equilibrium, and let’s fix λ ∈ [0, 1] and I ∈ I. We
start with three preliminary observations. First, e(c, λ, I) equals e∗ ◦∆I(c) for some
selection e∗ from ∆J(c) 7−→ Arg maxe∈[0,1] Vλ(e,∆J(c)), via Lemma 2. Second, every
selection from ∆J(c) 7−→ Arg maxe∈[0,1] Vλ(e,∆J(c)) is nondecreasing, because Vλ

6Receiver’s expected utility equals Vλ(e,∆I(c)) plus a constant, because we have Vλ(e,∆I(c)) =∫
[0,1]

UR(x, e, c, λ) dI ′(x) + x0 − c+ IF (c).
7This observation also arises as an implication of Blackwell’s theorem; Corollary 1 is a stronger

result that we use for the results in Section 4.
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satisfies strictly increasing differences, via Corollary 1 and known results (Topkis,
1978, Theorem 6.3). From these observations, it follows that e∗ ◦∆I is nondecreasing
on [0, x0] and nonincreasing on [x0, 1] because ∆I is nondecreasing on [0, x0] and ∆I

is nonincreasing on [x0, 1].
If e∗(∆I(x0)) = 0, then every cutoff c has e∗(∆I(c)) = 0, by the above observations.

Let’s suppose that e∗(∆I(x0)) > 0. We define cλ(∆I) = sup{c ∈ [0, x0] : e∗ ◦∆I(c) =

0}, if {c ∈ [0, x0] : e∗ ◦ ∆I(c) = 0} 6= ∅, and cλ(∆I) = 0 otherwise. We define
cλ(∆I) = inf{c ∈ [x0, 1] : e∗ ◦∆I(c) = 0}, if {c ∈ [x0, 1] : e∗ ◦∆I(c) = 0} 6= ∅, and
cλ(∆I) = 1 otherwise. First, we note that e∗ ◦∆I(c) > 0 only if: c ∈ [c, c]; second,
c ∈ (c, c) only if: e∗ ◦∆I(c) > 0. Thus, for all λ we have that: either no type (c, λ)

chooses positive effort or e−1
λ ((0, 1]) is an interval. The result follows from the fact

that ∆I(x0) ≥ ∆I(c) for all c ∈ [0, 1]. QED

For intuition, let’s assume linear effort cost, i.e., k(e) = e, capturing a market
price or fixed cost of information. Receiver compares the marginal cost and marginal
benefit of effort. As shown in Figure 4b, exerting effort 1 is optimal only if ∆I(c) ≥ λ,
and no effort is optimal only if ∆I(c) ≤ λ. Moreover, the net informativeness of I
at a cutoff is single peaked as a function of the cutoff (Figure 3). As an implication,
the set of cutoff types that exert positive effort is an interval. (The effort of the
indifferent type is not relevant in equilibrium for atomless cutoff distributions, by
Lemma B.4.) The proof of Lemma 3 generalizes the first part of the argument.
Specifically, the Receiver’s effort is nondecreasing in net informativeness at her cutoff
type by supermodularity of Vλ through comparative statics à la Topkis (1978).

4 Persuasion mechanisms

This section studies the equivalence between information policies and persuasion
mechanisms.

Definition 2. A persuasion mechanism I• is a list of information policies: I• =

(Ir)r∈R, with R equal to the support of the Receiver’s type. A persuasion mechanism
I• is incentive compatible (IC) if

max
e∈[0,1]

Vλ(e,∆I(c,λ)(c)) ≥ max
e∈[0,1]

Vλ(e,∆Ir(c)),
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for every type (c, λ) and report r.

Our focus on IC mechanisms references to an auxiliary screening game. First,
Sender publicly commits to a mechanism that selects an information policy for every
type report. Then, Receiver reports a type r ∈ R, knowing her true type (c, λ).
The rest of the game proceeds as in Section 2.2: Receiver chooses effort e, then
she observes the realization of a signal corresponding to information policy Ir with
probability e, and lastly chooses an action. We focus on equilibria in which Receiver
truthfully reports the type.

We consider a persuasion mechanism I• to be equivalent by information policy J
if all types chooses the same action and effort under truthful reporting given I• as in
some equilibrium of the subgame that starts with the Sender’s choice of information
policy J (Section 2.2).

Definition 3. An IC persuasion mechanism I• is equivalent to information policy J
if, for every type (c, λ):

1. Arg max
e∈[0,1]

Vλ(e,∆I(c,λ)(c)) ⊆ Arg max
e∈[0,1]

Vλ(e,∆J(c)),

2. ∂I(c,λ)(c) ⊆ ∂J(c) if (0, 1] ∩ Arg max
e∈[0,1]

Vλ(e,∆I(c,λ)(c)) 6= ∅.

If effort is costless, Definition 3 is the same as in Kolotilin et al. (2017, p. 1954).
The novelty is item 1., which requires type (c, λ) to choose the same effort under I•
as under the signal that is equivalent to I•. Item 2. in Definition 3 does not deal with
types who exert effort 0 under truthful reporting given I•. The reason is that the
equilibrium action given the prior belief does not depend on Sender’s information.8

Every IC persuasion mechanism is equivalent to a signal.

Theorem 1. Every IC persuasion mechanism is equivalent to an information policy.

This result guarantees that the characterization of the extensive margin of per-
suasion in Section 3 holds in more general environments, including applications in
which multiple information structures are available to decision-makers.

8Formally, the reason is that the equivalence of the action decision holds as a consequence
of item 1. “for this type.” Specifically, Arg maxe∈[0,1] Vλ(e,∆I(c,λ)(c)) = {0} implies that 0 ∈
Arg maxe∈[0,1] Vλ(e,∆J(c)) by item 1., and the optimal action at the prior belief given I• is the
same as given J , possibly via equilibrium selection.
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Figure 5: The upper envelope J of the information policies in the persuasion mecha-
nism I• = (I, L,K).

We sketch the intuition and proof of Theorem 1, which leverage Corollary 1. The
proof verifies that supermodularity is key by establishing the result for more general
Receiver’s payoff functions (Appendix B.2). Let’s claim that the IC mechanism I•

is equivalent to its upper envelope J (Figure 5), defined as J : x 7−→ supr∈R Ir(x).
Let’s fix a Receiver’s type (c, λ) that exerts positive effort. A report r is active at x
if Ir(x) ≥ Ir′(x) for all r′ ∈ R. First, we observe that an active report at c maximizes
Receiver’s expected utility. By Lemma 2, the report r affects Receiver’s utility only
through the net informativeness ∆Ir(c). By increasing differences, an active report
at c makes type (c, λ) weakly better off than any other report (Corollary 1, via the
envelope theorem for supermodular programming, Lemma C.11.) Hence, an active
report at c maximizes Receiver’s expected utility at the reporting stage.

Towards the equivalence with respect to effort, we strengthen the observation:
Receiver is strictly worse off with an inactive report than with an active report.
This conclusion uses both the fact that Corollary 1 establishes strictly increasing
differences and type (c, λ)’s positive effort (Lemma C.11). To build on this conclusion,
let’s order information policies according to the type-specific relation ≤c, defined
by Î ≤c Ĵ iff ∆Î(c) ≤ ∆Ĵ(c). The linear order ≤c is a completion of Blackwell’s
order and ranks the entries in mechanism I• according to Receiver’s expected utility.
By the IC property of the mechanism I•, the policy Ir maximizes ≤c on I• only if
∆Ir(c) = ∆I(c,λ).9 Hence, J(c) = I(c,λ)(c) ≥ Ir(c), for every report r. An application

9Blackwell’s theorem does not suffice for this conclusion, which uses (i) Corollary 1, (ii) the
envelope theorem (Appendix, Lemma C.11), and (iii) completeness of ≤c.
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of Lemma 2 completes the argument for the equivalence with respect to effort. In
particular, the net informativeness, ∆J(c), is the only component of the information
policy I(c,λ) that affects the effort decision in the IC mechanism I•. The proof uses a
continuity argument to cover the case of zero effort.

The equivalence with respect to action decisions follows from simple convex
analysis, due to our results. In particular, we have that ∂Ir(x) ⊆ ∂J(x) if report r is
active at x.

5 Optimality properties of upper censorships

This section discusses the properties of the following class of information policies.

Definition 4. The θ upper censorship, for state θ ∈ [0, 1], is the unique information
policy Iθ ∈ I such that

Iθ(x) =

IF0(x), x ∈ [0, θ]

max{IF0(θ) + F0(θ)(x− θ), IF (x)}, x ∈ (θ,∞).

The case of a single-peaked marginal distribution of the cutoff type is relevant
for applications (Romanyuk and Smolin, 2019; Kolotilin et al., 2022; Gitmez and
Molavi, 2023; Shishkin, 2024; Augias and Barreto, 2024; Sun et al., 2024). The class
of single-peaked distributions includes the standard uniform and the [0, 1]-truncated
normal.

Assumption 1. For all λ, the conditional distribution of the cutoff type given
attention type λ admits a density function g(·|λ) that is absolutely continuous.
Moreover, there exists p ∈ [0, 1] such that: for all λ, g(·|λ) is nondecreasing on [0, p]

and nonincreasing on [p, 1].

Under this assumption, we restrict attention to type distributions that are single-
peaked “in cutoff type” and with the same peak for all attention types. The continuity
restriction rules out the symmetric-information benchmark, which is treated separately
in the Appendix.

We first establish that an equilibrium exists and that the Sender’s equilibrium
expected utility is unique.
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Theorem 2. Under Assumption 1, there exists an equilibrium and the Sender’s
expected utility is the same in every equilibrium.

In the Appendix (Lemma B.4), we establish that continuity of the cutoff distribu-
tion ensures that Sender is indifferent among all Receiver’s best responses.10

The following result shows that an optimal signal that is an upper censorship
exists.

Theorem 3. Under Assumption 1, there exists an equilibrium in which the Sender’s
information policy is an upper censorship.

Given Theorem 1, Theorem 3 shows that the extensive margin of a complicated
optimal persuasion mechanism can be studied via an upper censorship. Moreover,
Theorem 3 reduces the Sender’s optimization to the uni-dimensional problem of
identifying an optimal threshold state.

In the case of costless attention and Sender-optimal equilibria, the argument
for Theorem 3 rests on the shape of the exogenous noise in Receiver’s action given
a posterior belief, from the Sender’s viewpoint. The Sender’s expected utility at
posterior mean x is H(x), letting H denote the distribution of the cutoff type. By
single-peakedness, H is “S shaped.” So, Sender is risk loving conditionally on low
posterior means, i.e., x < p, and he is risk averse around high posterior means.
In particular, a mean-preserving spread around a low posterior mean increases his
expected utility. Second-order dominance is related to the informativeness of Sender’s
signal because: F ∈ F is a mean-preserving spread of F̂ ∈ F iff IF is more Blackwell
informative than IF̂ . Moreover, the upper censorship Iθ induces either full information
conditionally on the state being lower than the threshold θ, or no information except
that θ > θ. Hence, intuitively, upper censorships induce posterior-mean distributions
that align with the Sender’s interests.

Let’s adjust the intuition for the case of endogenous effort, i.e., in which the
relevant information policy is x 7−→ eI(x) + (1− e)IF (x) if the Receiver’s effort is e.
We claim that effort is affected by the signal’s informativeness in a way that aligns with
the Sender’s interests. Let’s suppose that Sender increases the net informativeness of

10Lipnowski et al. (2024) show that uniqueness obtains in a general model, which does not nest
ours. Their Corollary 1 is similar to our observation, even if our proof leverages the convexity of (i)
information policies and (ii) Receiver’s interim utility a 7−→ maxe∈[0,1] Vλ(e, a). The latter result
obtains from the envelope theorem for supermodular optimization, Lemma C.11.
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posterior mean x: ∆I(x). This change induces cutoff type x to pay extra attention,
via the envelope theorem for supermodular optimization (lemmata 2 and C.11.) If
cutoff type x increases her effort, she gathers more information, because the policy
x 7−→ eI(x) + (1 − e)IF (x) increases in the Blackwell’s order as e increases. Thus,
Sender spreads out the Receiver’s posterior-mean distribution around x by increasing
the net informativeness. This argument, however, is “local.” Specifically, the net
informativeness ∆I(x) increases only via switching to an information policy satisfying
the convexity constraint in I. The proof deals with this point by constructing an
upper censorship that improves upon I, for arbitrary I.

The following result shows that Sender provides more information as Receiver’s
attention cost increases, for small attention costs. We say that I ∈ I is optimal if there
exists an equilibrium in which Sender chooses I. We say that strict single-peakedness
holds if: Assumption 1 holds and, for all λ, g(·|λ) is increasing on [0, p] and decreasing
on [p, 1].

Proposition 1. Let strict single-peakedness hold, F0 admit a density, k be linear,
and the attention type put full mass at λ. Let Iθε be an optimal upper censorship if
λ = ε, and Iη be an optimal upper censorship if λ = 0, with η ∈ (0, 1). It holds that
θε > η for all sufficiently small ε > 0.

The same qualitative result holds in Wei (2021, Proposition 7). Let’s describe
the intuition in the symmetric-information benchmark, for c > x0. Sender solves
the maximization of the Receiver’s action subject to the constraint that she exerts
effort 1. Let’s claim that the “participation constraint” binds (Lemma B.5). Let’s
suppose this were not the case. Sender increases the probability of a posterior mean
x with x ≥ c as much as possible. Specifically, he induces the mean x = c with the
highest probability that satisfies Bayes’ rule (Kamenica and Gentzkow, 2011). Hence,
Receiver faces two contingencies: either she is indifferent between the actions or she
finds it optimal to go for the the riskless action. So, information brings no value,
which is a contradiction: the constraint binds. As an implication, Sender provides
more information as λ increases. Proposition 1 shows that the insight generalizes
to private information about the cutoff, for small λ. In general, a change in the
censorship state θε affects the extensive margin because of the Receiver’s private
information. We note, however, that only the extensive margin’s upper bound (c in
Figure 4b) is affected by small changes in θε around η, because a nontrivial upper
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censorship is optimal if λ = 0. Specifically, the net informativeness of Iθ is 0 at a
cutoff type weakly greater than the conditional expectation of θ given θ ≥ θ (Figure
4). So, be increasing the threshold state, Sender is countervailing the decrease in the
extensive margin’s upper bound that occurs as λ increases. This argument leads to
Proposition 1.

In applications to media capture, Sender cares directly about Receiver’s attention
(Gehlbach and Sonin, 2014). In this case, Sender is a dictator and owns a state’s
media, so he collects advertisement revenues. The next result shows that an extension
of the class of upper censorships contains an optimal information policy in these
applications.11 A bi-upper censorship is an information policy I such that

I(x) =


IF0(x), x ∈ [0, θ1],

IF0(θ1) + F0(θ1)(x− θ1), x ∈ (θ1, x1],

IF (x2)−m(x2 − x), x ∈ (x1, x2],

for m =
IF (x2)−[IF0 (θ1)+F0(θ1)(x1−θ1)]

x2−x1 and 0 ≤ θ1 ≤ x1 ≤ x2 ≤ 1.
Bi-upper censorships are defined by two threshold states, as in Figure 1.

Proposition 2. Let Assumption 1 hold with p ≥ x0, k be linear, the attention type
put full mass at λ, and the Sender’s utility be given by UG(θ, a, e, c, λ) := a+ γe for
γ ≥ 0. For every equilibrium 〈I, e(·), α〉, there exists a bi-upper censorship with a
weakly greater Sender’s expected utility than I, given e(·) and α.

The intuition clarifies that the additional threshold state is constructed to increase
the marginal benefit of effort of certain types in case Iθ induces fewer cutoff types
than what the optimal extensive margin. The proof constructs a bi-upper censorship
that improves upon an arbitrary information policy in terms of expected Receiver’s
action and extensive margin. First, we construct an upper censorship Iθ that improves
upon a given I for γ = 0, thanks to the same intuition as for Theorem 3. Second, we
take into account the endogeneity of the extensive margin: we modify Iθ in a way
that replicates the extensive margin of I by censoring extreme states on either sides
of the state space. At this stage, we have a candidate “improving” policy that is not

11Equilibrium existence is not established for this extension. The difficulty lies in establishing
continuity of the extensive margin — i.e., continuity of F 7−→ cλ(∆IF ) and F 7−→ cλ(∆IF ), defined
in the proof of Lemma 3 — when F is endowed with the L1-norm topology.

19



a bi-upper censorship. As a last step, we leverage single-peakedness to note that
increasing the lower bound of the extensive margin is beneficial for Sender, as in the
discussion following Proposition 1. The lower bound is maximized by choosing to
fully reveal low states, so the argument returns a bi-upper censorship.

The Sender’s preferences are introduced by Gehlbach and Sonin (2014), who
assume binary state and Sender’s signal. The case of γ = 0 is studied by Kolotilin
et al. (2022), who show that upper censorships are optimal signals for costless attention.
The requirement that the cutoff’s peak satisfies p ≥ x0 represents sufficient ex-ante
disagreement between Sender and Receiver, as in Shishkin (2024) and for symmetric
cutoff densities.

6 Discussion and interpretation

The term λk(e) in the Receiver’s utility represents her attention cost. In particular,
let’s think of e as representing an attention effort and consider the effort-choice stage
of the game for nondecreasing k. An increase in attention effort results in a more
informed Receiver in the Blackwell’s sense (Figure 3) and higher costs. The general
functional form of effort cost allows the model to capture a range of attention- and
non-attention-related phenomena. Examples of costly attention include cognitive
difficulties and memory limits. In contrast, the opportunity cost of being attentive is
relevant when evaluating media subscription or exposure.

Alternative models of costly attention and information design In Lip-
nowski et al. (2020) (LMW), the attention cost is proportional to the reduction
in the uncertainty about the state. Receiver incurs a cost for what she learns about
the state. LMW is a model of delegated learning (Bloedel and Segal, 2021), which fits
applications with: a separate entity from Receiver researching about θ and Receiver
learning through that research. As an illustration, LMW captures the problem of a
firm (Receiver) that processes data provided by an information intermediary (Sender).
Wei (2021) applies this paradigm to study state-independent Sender’s preferences.

In the main model of Bloedel and Segal (2021) (BS), the attention cost is propor-
tional to the entropy reduction of the Receiver’s belief about the Sender’s message.12

12We describe the main model of BS with state-independent Sender’s preferences and entropy-based
cost, even though the paper includes other preferences and costs.
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Receiver incurs a cost for what she learns about the Sender’s talk. BS is a model of
learning from communication, fitting applications in which communication is costly to
process. As an illustration, BS captures the problem of a social-media user (Receiver)
who learns from the advertisement of an influencer (Sender) at a cost that involves
deciphering words and situations portrayed in the ad. The optimal Sender’s signal
is an upper censorship in BS, although for a different reason than in this model. In
particular, Sender perceives Receiver’s action as random, given a signal realization,
because of her attention strategy; in this model, instead, the randomness arises due
to both the Receiver’s effort and asymmetric information (as discussed in Section
5.) Bloedel and Segal also consider our symmetric-information benchmark, as an
alternative to their model.

In this model, the attention cost is independent of the information provided by
Sender, and fully flexible in this class. Receiver incurs a cost for exposure to the
Sender’s communication. We model learning via exposure, fitting applications in which
the Receiver’s strategy has a cost irrespectively of Sender’s information provision.
Paying full attention to a communication that turns out uninformative is allowed to
have any cost here, whereas this strategy is costless in BS and LMW. As an illustration,
this model captures the problem of a platform user (Receiver) who devotes a share of
her mental energy to learning about current affairs from her news feed engineered by
the platform (Sender). If the feed contains only friends’ updates and product ads,
searching for news is both costly and fruitless. This “independence” feature, between
costs and information, is well suited for applications in which cognitive costs are
thought of as less granularly than in BS-LMW and possibly aggregated with costs of
different nature.

Our model builds upon BS and LMW by constraining the Receiver’s strategies to
mixtures of full and null information about the Sender’s message. In the rational-
inattention tradition (Sims, 2003), the Receiver of BS-LMW flexibly allocates her
cognitive resources because she can learn in any conceivable way. However, allowing
such flexibility comes with tracking multiple signal structures and using extensions of
entropy-based costs. By insisting on a single attention variable, effort, our framework
abstracts from these complexities while preserving the fundamental tradeoff of rational
inattention. By extending the “constrained BS-LMW”, we analyze additional questions
related to screening and the shape of the extensive margin, which complement the
current literature. Moreover, departures from flexibility reflect real-life psychological
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and technological constraints. For instance, a consumer may only choose the time and
mental energy to spend in front of the TV, and a voter may only choose how many
articles to sample randomly and learn fully from in a newspaper. Lastly, rational
inattention is not the only explanation for costly effort, which could refer to the
opportunity cost of learning or a transfer paid to “infomediaries” — including Sender,
as in Proposition 2 — in applications.

In Matysková and Montes (2023), Receiver pays a cost to access additional
information beyond what the Sender provides. In Dworczak and Pavan (2022),
Receiver may have access to extra information sources than just the Sender’s one.
These models target a fundamentally different strategic context than ours and fit
applications in which the Sender’s communication is costless to understand. The
Sender’s tradeoff involves (i) inducing favorable actions and (ii) preventing the access
to external information that may hinder (i). In the model with binary state and action
of Matysková and Montes, Sender provides more information as the Receiver’s cost
increases, similarly as in Proposition 2. However, the channel is different: in Matysková
and Montes (2023), Sender provides more information so as to disincentivize (extra)
attention, whereas here Sender does it to incentivize attention.

7 Conclusion

This paper proposes a model of inattention within a persuasion game, which under-
scores the complementarity between information and attention effort. This comple-
mentarity leads to the equivalence of persuasion mechanisms and experiments. The
sender’s optimization problem is solved by censoring favorable states. This strategy
is also relevant in contexts in which attention is directly valued, such as in media
capture.

In general, complementarity may hold only “locally”, across audiences and informa-
tion structures, for instance due to information overload and psychological constraints.
A study of the extensive margin of persuasion that incorporates these distinctions
offers an open avenue for future research.
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Appendix

A Equilibrium

A.1 The equivalence between signals and information policies

Lemma A.1. The following hold:

1. If F ∈ F , then IF ∈ I;

2. If I ∈ I, then I ′ ∈ F , extending I to take value 0 at every x < 0.

Proof. See Gentzkow and Kamenica (2016) and Kolotilin (2018). QED

A.2 Equilibrium definition

We define a Perfect Bayesian Equilibrium in which Sender directly chooses an ex-
periment F ∈ F . From Section C.1, this approach is without loss. From Lemma
A.1, the equilibrium notion is essentially the same as in the text (Section 2.2). Let T
denote the support of Receiver’s type. Given F ∈ F and effort ε ∈ [0, 1], we define
ε� F = εF + (1− ε)F , and note that ε� F ∈ F . An equilibrium is a tuple 〈F, e, α〉,
in which F ∈ F , e(·, F̂ ) : T −→ [0, 1] is measurable for all F̂ ∈ F , α(·, x) : T −→ [0, 1]

is measurable for all x ∈ [0, 1], and α(c, λ, ·) : [0, 1] −→ [0, 1] is measurable for all
(c, λ) ∈ T , such that:

1. α satisfies a Opt:

α(c, λ, x) > 0 only if 1 ∈ Arg max
a∈{0,1}

a(θ − c)

for all x ∈ [0, 1], (c, λ) ∈ T ;

2. e satisfies e Opt:

e(c, λ, F̂ ) ∈ Arg max
e∈[0,1]

∫
[0,1]

max
a∈{0,1}

UR(x, a, e, c, λ) d(e(c, λ, F̂ )� F̂ )(x)

for all (c, λ) ∈ T, F̂ ∈ F ;

3. F is rational for Sender given (α, e), that is: F maximizes

Ŵ (·, e, α) : F̂ 7−→
∫

[0,1]

∫
[0,1]

∫
[0,1]

α(x, c, λ) d(e(c, λ, F̂ )� F̂ )(x) dG(c|λ) dG(λ)
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on F .

The set of maximizers in e Opt is nonempty because the function e 7−→ UR(x, a, e, c, λ)

is continuous for all x, a, c, λ. Lemmata B.2 and B.4 establish that the maximization
in (3.) is well-defined, given (α, e) satisfying items (1.) and (2.).

B Proofs

We endow F with the L1 norm, which metrizes weak convergence (Machina, 1982,
Lemma 1). We endow I with the pointwise order, denoted by ≤. We define the
functions

Wλ : F 7−→
∫

[0,1]

Vλ(∆IF (c))
∂g

∂c
(c|λ) dc

and W : F 7−→
∫

[0,1]
Wλ(F ) dG(λ). The function g : R2 −→ R exhibits increasing

differences if t 7−→ g(s′, t)− g(s, t) is nondecreasing for all s′, s ∈ R with s < s′.
Proofs that are mainly technical or follow from known arguments are relegated to

Appendix C.

Definition 5. The experiment F is W maximal if F maximizes W on F . The
experiment F̂ ∈ F is an equilibrium experiment if there exists an equilibrium 〈F, e, α〉
with F̂ (x) = F (x) for all x ∈ R. The Receiver’s value of F ∈ F is Vλ(∆IF (c)) :=

maxe∈[0,1] Vλ(e,∆IF (c)). There are multiple Sender’s payoffs if there exist equilibria
〈F, e, α〉 and 〈F̃ , ẽ, α̃〉 such that Ŵ (F, e, α) 6= Ŵ (F̃ , ẽ, α̃).

Remark B.1. Let’s fix an equilibrium 〈F, e(·), α〉. We have e(c, λ, I) = e∗λ ◦∆I(c)

for some selection e∗λ from ∆J(c) 7−→ Arg maxe∈[0,1] Vλ(e,∆J(c)) by e Opt. We define
cλ(∆I) = sup{c ∈ [0, x0] : e∗λ ◦ ∆I(c) = 0}, if {c ∈ [0, x0] : e∗λ ◦ ∆I(c) = 0} 6= ∅,
and cλ(∆I) = 0 otherwise. We define cλ(∆I) = inf{c ∈ [x0, 1] : e∗λ ◦∆I(c) = 0}, if
{c ∈ [x0, 1] : e∗λ ◦∆I(c) = 0} 6= ∅, and cλ(∆I) = 1 otherwise.

B.1 Proof of Lemma 1

Proof. Let’s fix Receiver’s type (c, λ) and I ∈ I. By definition of UR, letting α(c, x)

be any probability measure over {0, 1} such that α(c, x)
(

Arg maxa∈{0,1} a(x− c)
)

= 1
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for all x ∈ [0, 1], we have∫
[0,1]

UR(x, e, c, λ) dI ′(x) + λk(e) =

∫
[c,1]

x− c dI ′(x)

−
(
1− α(c, c)({1})

)(
I ′(c)− I ′(c−)

)
(c− c),

=

∫
[c,1]

x− c dI ′(x).

Moreover, ∫
[0,1]

UR(x, e, c, λ) dI ′(x) + λk(e) = (1− c)−
∫

[c,1]

I ′(x) dx,

= x0 − c+ I(c).

in which the first equality is due to Riemann–Stieltjes integration by parts (Machina,
1982, Lemma 2) and the second to absolute continuity of I. It follows that∫

[0,1]

UR(x, e, c, λ) dI ′(x)−
∫

[0,1]

UR(x, e, c, λ) dF (x) = ∆I(c).

QED

B.2 Proof of Theorem 1

Theorem 1 is implied by the result proved in this section as Proposition B.1. For
this section, we fix a function f : [0, 1]× [0, 1] −→ R2 that satisfies strictly increasing
differences, and such that: f(·, a) is continuous for all a ∈ [0, 1], f(e, ·) is nondecreasing
for all e ∈ [0, 1], the derivative with respect to the variable a, ∂f

∂a
(e, ·), exists, is

nonnegative and bounded for all e ∈ [0, 1], and f(e, ·) is increasing for all e ∈ (0, 1].
We maintain the definitions of the main text except that the following definitions
replace the corresponding ones in the main text: The value of I ∈ I, given type (c, λ)

and effort e, is Vλ(e,∆I(c)) := f(e,∆I(c))−K(e, λ), and the cost of effort e ∈ [0, 1]

is K(e, λ) for a continuous function K(·, λ). We use the shorthand t = (ct, λt) and
we define the set of optimal efforts

Eλt(∆I(ct)) := Arg max
e∈[0,1]

Vλt(e,∆I(ct)),
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and Vλt(∆I(ct)) := maxe∈[0,1] Vλt(e,∆I(ct)), for I ∈ I. A persuasion mechanism I• is
incentive compatible (IC) if:

t ∈ Arg max
r∈R

Vλt(∆Ir(ct)), for all types t ∈ T .

Definition 6. An IC persuasion mechanism I• is equivalent to an experiment if there
exists information policy I such that, for all t ∈ T :

1. Eλt(∆It(ct)) ⊆ Eλt(∆I(ct)),

2. ∂It(ct) ⊆ ∂I(ct) if (0, 1] ∩ Eλt(∆It(ct)) 6= ∅.

Proposition B.1. Every IC persuasion mechanism is equivalent to an experiment.

Proof. Let’s fix an IC persuasion mechanism I•. The proof has three steps: (1) we
define an information policy J , (2) we show that J induces the same effort and (3)
action as I•.

(1) Definition of information policy J Let’s define the function I : [0, 1] −→
[0, 1] as

I(c) := sup
r∈R

Ir(c), c ∈ [0, 1].

I(c) is well defined because 0 ≤ Ir(c) ≤ IF0(c) ≤ 1 − x0, c ∈ [0, 1]. I is the
pointwise supremum of a family of convex functions, so I is convex. We have
IF (c) ≤ I(c) ≤ IF0(c), c ∈ [0, 1], because Ir ∈ I, r ∈ R. We extend I on (1,∞),
so that the resulting extended function J : R+ −→ R+ is an information policy, by
defining J(c) = IF0(c), c ∈ (1,∞), and J(c) = I(c), c ∈ [0, 1]. Thus, J ∈ I.

(2) Effort distribution There are two cases.

1. Eλt(∆It(ct)) ∩ (0, 1] 6= ∅.

2. Eλt(∆It(ct)) = {0}.

First, we consider case (1.). By the envelope theorem (Lemma C.11), we have:

Vλt(a)− Vλt(∆It(ct)) =

∫ a

∆It(ct)

∂f

∂e
(ã, e(ã)) dã,
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for a selection e of Eλt . Because f exhibits strictly increasing differences, e(ã) ≥
e(∆It(ct)) if ã ≥ ∆It(ct). By the assumption that ∂f

∂e
(ã, ·) > 0 on (0, 1] for all ã

Vλt(a)− Vλt(∆It(ct)) > 0, for all a > ∆It(ct).

Thus, in case (1.), IC implies that

sup
r∈R

∆Ir(ct) = ∆It(ct).

Let’s consider case (2.), and, towards a contradiction, let’s suppose 0 /∈ Eλt(∆J(ct)).
By Berge’s Maximum Theorem (Aliprantis and Border, 2006, Theorem 17.31), Eλt
is upper hemi-continuous and has compact values. Hence, by the sequential charac-
terization of upper hemi-continuity of compact-valued correspondences (Aliprantis
and Border, 2006, Theorem 17.16), there exists a ∈ (∆It(ct),∆J(ct)) and f > 0

such that f ∈ Eλt(a) (else, define an := 1
n
∆It(ct) +

(
1− 1

n

)
∆J(ct), n ∈ N, to get:

an −→ ∆J(ct) as n −→ ∞, Eλt(an) = {0}, n ∈ N, and 0 /∈ Eλt(∆J(ct)), which
contradicts upper hemi-continuity of Eλt .) By the assumption that ∂f

∂e
(ã, ·) > 0 on

(0, 1] for all ã

Vλt(∆J(ct))− Vλt(a) > 0.

The above inequality and the envelope theorem imply that

Vλt(∆J(ct))− Vλt(∆It(ct)) > 0.

Hence, IC does not hold, which is a contradiction. Thus, 0 ∈ Eλt(∆J(ct)).

(3) Action distribution Let’s suppose that d ∈ ∂Is(cs) and d /∈ ∂J(cs) for some
type s ∈ T . Because Is and J are information policies, they have the same extension
on (−∞, 0) and, so, cs > 0. We have that d is a subgradient of Is at cs, and d is
not subgradient of J at cs; from the fact that J(cs) = Is(cs) — established above —,
there exists x ∈ R such that

Is(x) ≥ Is(cs) + d(x− cs) > J(x),

which implies Is(x) > J(x). The last inequality contradicts the definition of J . QED
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B.3 Proof of Theorem 2

In this section, we maintain the assumption that: the conditional density of the cutoff
type given the attention type λ, g(·|λ), is absolutely continuous for all λ.

Lemma B.2. The function W is continuous on F .

Lemma B.3. There exists a measurable selection from (c, λ, x) 7−→ Arg maxa∈{0,1} a(θ−
c), for all e ∈ [0, 1], and there exists a measurable selection from (c, λ) 7−→ Arg maxe∈[0,1] e∆IF (c)−
λk(e), for all F ∈ F .

Proof. The nontrivial part is the second one. The maximand is a real-valued function
that is continuous in c, λ, and e. So, the Measurable Maximum Theorem holds
(Aliprantis and Border, 2006, Theorem 18.19). QED

The next result establishes that the Sender’s expected utility given I ∈ I the
same in every equilibrium adopting a slightly stronger uniqueness condition than in
Definition 5. The comparison holds for two reasons. First, Definition 5 compares
Sender’s expected utility given the equilibrium information policy across equilibria,
whereas the proof compares Sender’s expected utility given an arbitrary and fixed
information policy across equilibria. Second, the proof looks at the conditional
expected utility given λ.

Lemma B.4. The experiment F is an equilibrium experiment if, and only if: F is
W maximal. Moreover, there are not multiple Sender’s payoffs.

Proof. We first show that: F is W maximal if, and only if: F is rational for Sender
given (α, e), α satisfies a Opt, and e satisfies e Opt. It suffices to show that the
function

Dλ(·, α, e) : F 7−→
∫

[0,1]

∫
[0,1]

α(x, c, λ) d(e(c, λ, F )� F )(x) dG(c|λ)−Wλ(F )

is constant for all λ. First, let’s express the Sender’s equilibrium–conditional-expected
utility given λ as

Ŵλ(F ) :=

∫
[0,1]

∫
[0,1]

e∗λ(∆IF (c))(α(x, c, λ)− α(x0, c, λ)) dF (x) dG(c|λ)

+

∫
[0,1]

α(x0, c, λ) dG(c|λ),
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for a selection e∗λ from a 7−→ Arg maxe∈[0,1] Vλ(e, a), via Remark B.1. By Lemma 2,
there exists a selection d1

I from the subdifferential of ∆IF on [0, x0] and a selection d2
I

from the subdifferential of ∆IF on (x0, 1] such that:

−(Ŵλ(F )− Ŵλ(F )) =

∫
[0,x0]

e∗λ(∆IF (c))d1
I(c) dG(c|λ) +

∫
(x0,1]

e∗λ(∆IF (c))d2
I(c) dG(c|λ)

By the envelope theorem (Lemma C.11), e∗λ is a selection from the subdifferential
of the convex and nondecreasing function Vλ. By construction, ∆IF is: (i) convex
on [0, x0], and (ii) convex on (x0, 1]. Hence: by the rules of subdifferential calculus
(Fact C.1), there exists a selection d from the subdifferential of Vλ ◦ ∆IF such
that: d(c) = e∗λ(∆IF (c))d1

I(c), for all c ∈ [0, x0], and d(c) = e∗λ(∆IF (c))d2
I(c), for all

c ∈ (x0, 1]. Hence:

−(Ŵλ(F )− Ŵλ(F )) =

∫
[0,x0]

d(c) dG(c|λ) +

∫
(x0,1]

d(c) dG(c|λ)

=

∫
[0,x0]

d(c) dG(c|λ) +

∫
[x0,1]

d(c) dG(c|λ),

in which the second equality uses absolute continuity of G(·|λ). By Fact C.1, the
composition Vλ ◦∆IF is a convex function on [0, x0], so Vλ ◦∆IF is the integral of any
selection from the its subdifferential on [0, x0] (Rockafellar, 1970, Corollary 24.2.1.)
Similarly, Vλ ◦∆IF is a convex function on [x0, 1]. By absolute continuity of g(·|λ),
we integrate by parts to obtain

−(Ŵλ(F )− Ŵλ(F )) = Vλ ◦∆IF (1)g(1|λ)− Vλ ◦∆IF (0)g(0|λ)

−
∫

[0,1]

Vλ ◦∆IF (c)
∂g

∂c
(c|λ) dc.

The fact that ∆IF (1) = ∆IF (0) = 0 implies

−(Ŵλ(F )− Ŵλ(F )) = (g(1|λ)− g(0|λ))Vλ(0)−
∫

[0,1]

Vλ ◦∆IF (c)
∂g

∂c
(c|λ) dc.

Hence,

Ŵλ(F ) = W (F ) + Ŵλ(F )− (g(1|λ)− g(0|λ))Vλ(0).
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So,

Dλ(F, α, e) =

∫
[0,1]

α(x0, c, λ) dG(c|λ)− (g(1|λ)− g(0|λ))Vλ(0).

As a result, Dλ(·, α, e) is constant on F . Hence, F is W maximal if, and only if: F is
rational for Sender, given (α, e), α satisfies a Opt, and e satisfies e Opt.

From the above equivalence, it follows that: if 〈F̂ , e, α〉 is an equilibrium, then
F̂ is W maximal. For the other direction, let F be W maximal. By Lemma B.3,
there exist e and α that satisfy the equilibrium measurability conditions, a Opt, and
e Opt, given F . Because F is W maximal, F is rational for Sender, given (α, e), by
the above equivalence. Thus, 〈F, e, α〉 is an equilibrium.

As an implication, there are not multiple Sender’s payoffs. QED

Proposition B.2. There exists an equilibrium.

Proof. The set F is compact in the topology induced by the L1 norm (Kleiner et al.,
2021, Proposition 1.) The result follows from Lemma B.4 via upper semi continuity
of the Sender’s maximand in the definition of W maximality (Lemma B.2). QED

Proof of Theorem 2

Proof. Theorem 2 is implied by Lemma B.4 and Proposition B.2, given that Assump-
tion 1 contains the continuity requirements assumed in this section. QED

B.4 Proof of Theorem 3

Theorem 3 is a consequence of Lemma B.4 and the following property of upper
censorship. A version of the property is in the working paper Lipnowski et al., 2021,
Appendix A.5; Kolotilin et al. (2017, Theorem 2) and Romanyuk and Smolin (2019,
Theorem 2) establish similar results.

Lemma B.5. Let I ∈ I and ζ ∈ [0, 1]. There exists θ ∈ [0, ζ] such that:

(1.) Iθ(ζ) = I(ζ);

(2.) I ′θ(ζ−) ≤ I ′(ζ−), and

Iθ(x)− I(x) ≥ 0, for all x ∈ [0, ζ],

Iθ(x)− I(x) ≤ 0, for all x ∈ [ζ,∞).
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.

Proof of Theorem 3

Proof. By Lemma B.4, if F ∗ ∈ F maximizes

W : F 7−→
∫

[0,1]

∫
[0,p]

Vλ(∆IF̂ (c))
∂g

∂c
(c|λ) dc+

∫
[p,1]

Vλ(∆IF̂ (c))
∂g

∂c
(c|λ) dc dG(λ),

then there exists an equilibrium in which F ∗ is the Sender’s experiment. Suppose two
experiments F,H ∈ F such that IF (x) ≥ IH(x) for all x ∈ [0, p] and IF (x) ≤ IH(x)

for all x ∈ [p, 1]. Because (i) Vλ is nondecreasing, (ii) ∂g
∂c

(·|λ) is nonnegative on [0, p]

and nonnpositive on [p, 1], it follows that W (F ) ≥ W (H). Hence, the result follows
from Lemma B.5. In particular, by Proposition B.2, there exists an equilibrium
experiment F̂ , and by Lemma B.5 there exists F ∗ such that F ∗ weakly improves
upon F̂ in terms of W and IF ∗ is an upper censorship. QED

B.5 Proof of Proposition 1

The proof has four steps. First, we establish a single-crossing property of the derivative
of the Sender’s payoff given Iθ with respect to θ, in three claims. Second, we establish
a monotonicity property of the Sender’s payoff given Iθ with respect to θ given certain
conditions, in two claims. The third step verifies that the optimality properties
and the hypotheses in the statement of the Proposition imply the aforementioned
conditions. The final step completes the argument.

Proof. Let’s fix an equilibrium 〈F, e, α〉.

(1.) Let strict single-peakedness hold. We claim that the function (θ, ζ) 7−→∫
[θ,ζ]

(c− θ) ∂
∂c
g(c|λ) dc crosses zero at most once and from above, that is:∫

[θ,ζ]

(c− θ) ∂
∂c
g(c|λ) dc ≤ 0 =⇒

∫
[θ′,ζ′]

(c− θ′) ∂
∂c
g(c|λ) dc < 0,
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for all θ ≤ θ′ and ζ ≤ ζ ′, with θ′ < ζ ′, θ < ζ. If p ≤ θ′, the result holds. If∫
[θ,ζ]

(c− θ) ∂
∂c
g(c|λ) dc ≤ 0, then p < ζ. We have∫

[θ,ζ]

(c− θ) ∂
∂c
g(c|λ) dc =

∫
[θ,θ′)

(c− θ) ∂
∂c
g(c|λ) dc+

∫
[θ′,p)

(c− θ) ∂
∂c
g(c|λ) dc

+

∫
[p,ζ]

(c− θ) ∂
∂c
g(c|λ) dc.

Let
∫

[θ,ζ]
(c− θ) ∂

∂c
g(c|λ) dc ≤ 0. Then:∫

[θ,θ′)

(c− θ) ∂
∂c
g(c|λ) dc+

∫
[θ′,p)

(c− θ) ∂
∂c
g(c|λ) dc ≤ −

∫
[p,ζ]

(c− θ) ∂
∂c
g(c|λ) dc,

which implies, by θ′ < p:∫
[θ′,p)

(c− θ) ∂
∂c
g(c|λ) dc < −

∫
[p,ζ]

(c− θ) ∂
∂c
g(c|λ) dc.

From the above inequality and p < ζ, we have:∫
[θ′,p)

(c− θ) ∂
∂c
g(c|λ) dc+

∫
[p,ζ]

(c− θ) ∂
∂c
g(c|λ) dc+

∫
(ζ,ζ′]

(c− θ) ∂
∂c
g(c|λ) dc < 0,

so the claim follows.

(2.) Let strict single-peakedness hold.
∫

[θ,c]
(c − θ) ∂

∂c
g(c|λ) dc is increasing in λ if

p ≤ c, for c := cλ(∆Iθ) and c ∈ (x0, 1). The claim holds because λ 7−→ cλ(∆Iθ) is
decreasing under our hypotheses.

(3.) Let Assumption 1 hold. We claim that cλ(∆Iθ) > θ, p ≤ cλ(∆Iθ), and
cλ(∆Iθ) ∈ (x0, 1), if: I ′θ maximizes W on F and F0, F do not maximize W on F . If
cλ(∆Iθ) ≤ θ, then F0 maximizes W on F . If cλ(∆Iθ) < p, then F0 maximizes W on
F . The rest of the claim follows from similar arguments.

(4.) Let xθ :=
∫ 1
θ
θ dF0(θ)

1−F0(θ)
, for threshold state θ ∈ [0, 1]. By Lemma B.4, we compute

the derivative of the Sender’s expected utility, given information policy Iθ, with
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respect to θ, which is:

∂

∂θ
W (I ′

θ
) =

∂F0

∂θ
(θ)
∫

[max{θ,cλ(∆Iθ)},cλ(∆Iθ)]
(x− θ)∂g

∂c
(x|λ) dx, if θ < cλ(∆Iθ)

0, if θ > cλ(∆Iθ).

As claimed above, under our hypotheses, θε < cλ(∆Iθε). Moreover, by strict single-
peakedness, there exists a unique optimal upper censorship Iη if λ = 0, with η ∈ (0, 1)

(Kolotilin et al., 2022, Lemma 7.) Let’s complete the proof.
First, claim 1. implies that θ 7−→ W (I ′

θ
) crosses zero only once and from above:

at θε. By claims 2. and 3., θε > η, for ε > 0. QED

B.6 Proof of Proposition 2

The proof of Proposition 2 has two steps. The first and main step has the same
structure as that of Theorem 3. In particular, Lemma B.6 generalizes the construction
of Lemma B.5 to construct: an information policy I? that preserves the extensive
margin and improves upon an arbitrary information policy I, for large p. I? induces
two censorship regions, separated by a full-revelation region. The second step of the
proof: (1) adds a second censorship region at the top to include the general case of
p > x0, and (2) verifies that eliminating the bottom censorship region improves upon
Sender’s payoff. For the rest of this section, we omit reference to λ and we fix an
equilibrium 〈F, e(·), α〉.

Lemma B.6. Let I ∈ I and define c∗ := c(∆I). There exists an information policy
I? that satisfies the following properties:

1. (FEAS) I? is feasible, i.e., I? ∈ I;

2. (EM) I? produces the same extensive margin as I, i.e., c(∆I?) = c∗ and
c(∆I?) = c(∆I);

3. (IMPR) ∆I?(x) ≥ 0, for all x ∈ [c(∆I), c∗];
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4. (CENS) There exist x`, θ`, θm, xm such that 0 ≤ x` ≤ θ` ≤ θm ≤ xm ≤ 1 and

I?(x) =



IF (x) , x ∈ [0, x`]

IF0(θ`) + F0(θ`)(x− θ`) , x ∈ (x`, θ`]

IF0(x) , x ∈ (θ`, θm]

IF0(θm) + F0(θm)(x− θm) , x ∈ (θm, xm]

IF (x) , x ∈ (xm,∞).

Proof. We use the notation: c(∆I) =: c, c(∆I) =: c. In the first step, we prove the
result for the case in which there is a feasible information policy that is a straight line
between the points p := (c, I(c)) and p := (c, I(c)). In the second step we analyze
the other case.

First Step. Let’s define the line i such that x 7−→ I(c) + λ∗(x − c), with slope
λ∗ := I(c)−I(c)

c−c . We claim that i?(x) := max{i(x), IF (x)} satisfies all properties. i?

is FEAS by hypothesis. i? is EXT because i(c) = I(c) and i(c) = I(c). i? is IMPR
because I is convex and i? is EXT. i? is CENS with θ` = θm = xm, because: (i) EXT
of i? and convexity of I imply that i? is affine on [c, c], (ii) λ∗ ∈ [0, 1] and EXT imply,
with I ∈ I, that there are intersection points x̃1, x̃2, with x̃1 ≤ c ≤ c ≤ x̃2, such that:
i?(x) = I(x) if x ∈ [0, x̃1] ∪ [x̃2, 1].

Second Step. In this case, i? is not FEAS. Because i? satisfies FEAS at x if x ≤ c

and if x ≥ c, there exists a point x∗ ∈ (c, c) such that: i(x∗) > IF0(x
∗). Let’s define:

L := {λ ∈ [I ′(c), 1] : I(c) + λ(x− c) ≤ IF0(x) for all x ∈ [c,∞)},

M := {λ ∈ [0, I ′(c)] : I(c) + λ(x− c) ≤ IF0(x) for all x ∈ [0, c̄]},

` := maxL, m := minM , and the lines

y` : x 7−→ I(c) + `(x− c),

ym : x 7−→ I(c̄) +m(x− c̄).

As part of the rest of the proof, we establish some lemmata.

Lemma B.7. It holds that ` and m are well-defined.

Proof. L is nonempty because I ′(c) ∈ L, which follows from: (i) IF0(x) ≥ I(x) for
all x and (ii) I ′(c) ∈ ∂I(c). M is nonempty because I ′(c) ∈M , which follows from:
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(i) IF0(x) ≥ I(x) for all x and (ii) I ′(c) ∈ ∂I(c). L,M are closed because IF0 is
continuous. L,M are bounded. QED

Lemma B.8. There exists a unique pair of numbers (θ`, θm) ∈ [c, 1]× [0, c̄] such that:
y`(θ`) = IF0(θ`) and ym(θm) = IF0(θm).

Proof. Suppose there does not exists such θ`. There exists a sufficiently small ε > 0

such that: (i) ` + ε ∈ L and (ii) I(c) + (` + ε)(x − c) < IF0(x) for all x ∈ [c,∞);
we note that θ` = 1 contradicts ` ∈ L because I ′F0

(x) < 1 if x < 1. Uniquenss of θ`
follows from convexity of IF0 .

Suppose there does not exists such θm. There exists a sufficiently small ε > 0

such that: (i) ` − ε ∈ M and (ii) I(c̄) + (m − ε)(x − c̄) < IF0(x) for all x ∈ [0, c̄);
we note that θm = 0 contradicts I 6= IF . Uniquenss of θm follows from convexity of
IF0 . QED

Lemma B.9. It holds that θ` ≤ θm.

Proof. Let’s first prove that: it suffices to show that ` ≤ m. Suppose ` ≤ m, then,
from ` ∈ ∂IF0(θ`), m ∈ ∂IF0(θm), and IF0 being strictly convex, we have: θ` ≤ θm.

Next, we show that ` ≤ λ∗. Suppose that: ` > λ∗. Then: I(x) + `(x − c) >

I(c) + λ∗(x− c) for all x > c. Therefore, because ` > 0, we get:

IF0(x
∗) ≥ I(c) + λ∗(x∗ − c).

We reach a contradiction with the definition of x∗, so: ` ≤ λ∗.
Let’s prove thatm ≥ λ∗. Supposem < λ∗. Then: I(x)+m(x−c) > I(c)+λ∗(x−c)

for all x < c. Therefore, because m > 0, we get:

IF0(x
∗) ≥ I(c) + λ∗(x∗ − c).

We reach a contradiction with the definition of x∗, so: m ≥ λ∗. Therefore, we have
m ≥ λ∗ ≥ `, which implies θm ≥ θ`. QED

We define a candidate I? and verify that I? has the desired properties.

I?(x) :=


max{IF (x), I(c) + `(x− c)} , x ∈ [0, θ`]

IF0(x) , x ∈ [θ`, θm]

max{IF (x), I(c) +m(x− c)} , x ∈ [θm,∞)
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Let’s first verify that I? is well-defined. We know that ` ∈ ∂IF0(θ`) and m ∈ ∂IF0(θm).
Because I(c)+`(0−c) < IF0(0) and I(c) ≥ IF0(c), max{IF0(x), I(c)+`(x−c)} = IF0(x)

if x < x0; and max{IF0(x), I(c) + `(x − c)} = I(c) + `(x − c) if x > x0; for some
x0 ∈ [0, θ`]. In a similar way, we can show that there exists a x2 ∈ [θm, 1] such that:
max{IF0(x), I(c) +m(x− c)} = IF0(x) if x > x2, and max{IF0(x), I(c) +m(x− c)} =

I(c) +m(x− c) if x < x2.

1. CENS follows from the definition of I? and the conclusion of the above para-
graph.

2. IMPR on [c, θ`] and [θm, c] follows from convexity of I, and on [θ`, θm] follows
from FEAS of I in that region.

3. EM follows by construction of I?.

4. FEAS is established as in the last step of the proof of Lemma B.5.

QED

Proof of Proposition 2

Proof. Let’s define information policy J by: letting J equal I?, constructed as
in Lemma B.6 by replacing c∗ with p, for x ∈ [0, x◦m], defining the point x◦m in
which I? intercepts the line j : x 7−→ I(c) + I ′(c)(x− c); and letting J equal x 7−→
max{IF (x), j(x)} on [x◦m,∞).

It suffices to show that: if the resulting information policy J induces a censorship
region at the bottom, then there is an improvement over J that is a bi-upper censorship.
Suppose that I? is affine on [x`, θ`] and I? equals IF on [0, x`], for 0 < x` < θ` (for
notation, see Lemma B.6.) By construction, I?(θ`) = IF0(θ`). Let’s define information
policy K by

K(x) =

IF0(x) , 0 ≤ x ≤ θ`,

J(x) , x ≥ θ`.

We have K ≥ J , so K induces a weakly lower cλ, than J . Hence, by γ ≥ 0, it suffices
to verify that the expected Receiver’s action is weakly higher under K than under J .
Because p ≥ x0, the argument of Theorem 3 suffices. Specifically, by Lemma B.4, we
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have

W (K ′)−W (J ′) =

∫
[0,θ`]

(
Vλ(∆K(c))− Vλ(∆J(c))

)∂g
∂c

(c|λ) dc

≥ 0,

in which the inequality follows from the definition of I?, which includes p ≥ θ`.
Hence K is a bi-upper censorship that improves upon I, for arbitrary I, in terms of
UG. QED

C Supplementary material

C.1 Preliminaries

We claim that the Sender’s signal affects the decisions and payoffs of both Sender
and Receiver only through the distribution of the posterior mean that it induces on a
Bayesian agent who always observes the signal realization.

Type-t Receiver’s optimal action, given posterior belief µ ∈ D and t = (c, λ),
depends on the belief µ only through its mean xµ :=

∫
[0,1]

θ dµ(θ). The Receiver’s
expected material payoff given belief µ and is given by

vt(µ) :=


∫

[0,1]
(θ − c) dµ(θ), if xµ ≥ c,

0, if xµ < c.

We note that vt(µ) depends on the belief µ only through xµ. If the Sender’s signal
induces the Bayes-plausible distribution over posterior beliefs p (Kamenica and
Gentzkow, 2011), type-t Receiver chooses e ∈ [0, 1] to maximize her expected utility

e

∫
D
vt(µ) dp(µ) + (1− e)vt(F0)− λk(e).

Thus, Receiver’s action, effort, and her payoff depend on the Sender’s signal only via
the distribution of the posterior mean (i.e., the distribution of xµ implied by p.) The
claim follows from the Sender’s payoff function, which depends on the signal only via
the Receiver’s choice of action. The same conclusion holds under the hypothesis of
Proposition 2.
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C.2 Symmetric-information benchmark

For this section, the type distribution puts full mass at (ζ, κ), k is linear, and F0

admits a density. The Sender’s problem is:

max
I∈I

(
1− I ′(ζ−)

)
1{I∈I|∆I(ζ)≥κ}(I),

because an experiment F is an equilibrium experiment iff IF solves the above maxi-
mization, due to a generalization of the argument of Gentzkow and Kamenica (2016).
If ζ > 1, any information policy is optimal. If ζ < x0, IF is optimal. Let 1 ≥ ζ ≥ x0.

Lemma C.10. There exists θ ∈ [0, ζ] such that: Iθ solves the Sender’s problem and
∆Iθ ≤ κ, with equality if θ > 0.

Proof. Let Iu := {I ∈ I | I = Iθ, θ ∈ [0, ζ]}. Without loss of optimality by Lemma
B.5, we consider solutions in Iu. Suppose there exists a solution I ∈ Iu, such that
I = Iθ? , for some θ? ∈ (0, 1). We distinguish three cases.

(1) If ∆I(ζ) < κ, then Sender is indifferent between I and IF , so the lemma holds.
(2) If ∆I(ζ) = κ, the lemma holds. (3) If ∆I(ζ) > κ, then, by definition of I at
y = I(ζ),

IF0(θ
?) + F0(θ?)(ζ − θ?)− y = 0.

By the implicit function theorem, there exists a differentiable function t : (0, 1) −→
(0, 1) such that t : y 7−→ θ? and

t′(y) =


1

(ζ−t(y))
∂F0
∂θ

(t(y))
, 0 < ζ < t(y),

1
∂F0
∂θ

(t(y))
, 1 > ζ ≥ t(y).

Let’s define the value of the Sender’s maximand at Iθ as v : (0, 1) −→ [0, 1] such that
v : θ 7−→ 1 − I ′θ(ζ−). Because I ′θ?(ζ−) = F0(θ

?), v is differentiable in θ at θ?. The
derivative of v with respect to I(ζ) is:

−∂F0

∂θ
(t(I(ζ)))

1

(ζ − t(I(ζ)))∂F0

∂θ
(t(I(ζ)))

,

if ζ > t(I(ζ)), and −1 otherwise. It follows that we can consider without loss solutions
I ∈ Iu that satisfy: ∆Iθ(ζ) = κ and I = Iθ, or ∆I(ζ) < κ. QED
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C.3 Auxiliary results

Fact C.1 (Subdifferential of convex functions). Let S ⊆ R, f : S −→ R be convex
and ϕ : R −→ R be a nondecreasing convex function on the range of f . The following
hold:

1. The function ϕ ◦ f is convex on S;

2. For all y ∈ S, letting t = f(y), we have:

{αu : (α, u) ∈ ∂ϕ(t)× ∂f(y)} = ∂ϕ ◦ f(y).

Proof. See Bauschke and Combettes (2011, Proposition 8.21 and Corollary 16.72.)
QED

Lemma C.11 (Envelope theorem). Let f : [0, 1]2 −→ R exhibit increasing differences
and be such that: f(·, a) is continuous for all a ∈ [0, 1], f(e, ·) is nondecreasing for all
e ∈ [0, 1], the derivative with respect to the variable a, ∂f

∂a
(e, ·), exists and is bounded

for all e ∈ [0, 1]. The following hold.

1. We have Arg maxe∈[0,1] f(e, a) 6= ∅ for all a ∈ [0, 1].

2. The function a 7−→ maxe∈[0,1] f(e, a) is nondecreasing and absolutely continuous.

3. If a 7−→ ∂f
∂a

(e, a) is nondecreasing for all e ∈ [0, 1], then a 7−→ maxe∈[0,1] f(e, a)

is convex.

4. If f exhibits strictly increasing differences, a 7−→ ∂f
∂a

(e, a) is nondecreasing,
f(e, ·) is increasing for all e ∈ (0, 1], Arg maxe∈[0,1] f(e, a) ∩ (0, 1] 6= ∅, and
1 ≥ a′ > a ≥ 0, then

max
e∈[0,1]

f(e, a′) > max
e∈[0,1]

f(e, a).

Proof. By upper semi-continuity of f , Arg maxe∈[0,1] f(e, a) 6= ∅, so 1. holds. Then,
by the increasing-differences property of f , there exists a nondecreasing selection
e? : a 7−→ Arg maxe∈[0,1] f(e, a) on [0, 1] (Topkis, 1978). By our hypotheses, we apply
the envelope theorem (Milgrom and Segal, 2002), letting V (a) := maxe∈[0,1] f(e, a),
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to establish that V is absolutely continuous and

V (a) = V (0) +

∫
[0,a]

∂f

∂a
(e?(ã), ã) dã.

V is nondecreasing because ∂f
∂a
≥ 0. Hence, 2. holds.

Let’s establish that V is convex if a 7−→ ∂f
∂a

(e, a) is nondecreasing. By the
increasing-differences property of f : (i) e 7−→ ∂f

∂a
(e, a) is nondecreasing, and (ii) there

exists a nondecreasing e? : a 7−→ Arg maxe∈[0,1] f(e, a). As a result, a 7−→ ∂f
∂a

(e?(a), a)

is nondecreasing. Thus, V is convex (Rockafellar, 1970, Theorem 24.8.) Hence, 3.
holds.

Let a′ > a, for a′, a ∈ [0, 1], and e′ ∈ Arg maxe∈[0,1] f(e, a) ∩ (0, 1]. Then: V (a′)−
V (a) =

∫
[a,a′]

∂f
∂a

(e∗(ã), ã) dã for every selection e∗ of Arg maxe∈[0,1] f(e, a)∩ (0, 1]. We
have the following chain of inequalities under the additional hypotheses stated in part
4.:

V (a′)− V (a) ≥
∫

[a,a′]

∂f

∂a
(e′, ã) dã

≥
∫

[a,a′]

∂f

∂a
(e′, a) dã,

in which the first inequality follows from the strict increasing-differences property
of f and the definition of e′, the second inequality holds because a 7−→ ∂f

∂a
(e, a)

is nondecreasing (for the first inequality, in particular, we note that: (i) every
selection e∗ of Arg maxe∈[0,1] f(e, a)∩(0, 1] is nondecreasing, (ii) there exists a selection
e∗ of Arg maxe∈[0,1] f(e, a) ∩ (0, 1] such that e∗(a) = e′.) Item 4. holds because∫

[a,a′]
∂f
∂a

(e′, a) dã = (a′ − a)∂f
∂a

(e′, a). QED

C.4 Proof of Lemma B.2

Proof. Let’s fix λ, F ∈ F , and ε > 0, and define pλ :=
∫

[0,1]

∣∣∂g
∂c

(c|λ)
∣∣ dc. Let δ := ε

pλ

if pλ > 0, and let δ be an arbitrary positive number otherwise. Let H ∈ F be such
that

∫
[0,1]
|H(x)− F (x)| dx < δ.

We first establish the claim that: |Vλ(∆IH(c))− Vλ(∆IF (c))| < δ. By definition
of Vλ and the envelope theorem (Lemma C.11), there exists a selection e from
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c 7−→ Arg maxe∈[0,1] e∆IF (c)− λk(e) such that:

|Vλ(∆IH(c))− Vλ(∆IF (c))| =
∫

[min{∆IH(c),∆IF (c)},max{∆IH(c),∆IF (c)}]
e(a) da.

The codomain of e is [0, 1], so, by the above equality:

|Vλ(∆IH(c))− Vλ(∆IF (c))| ≤ |∆IH(c)−∆IF (c)|.

We have the following chain of inequalities,

|Vλ(∆IH(c))− Vλ(∆IF (c))| ≤
∣∣∣∣∫

[0,c]

H(x)− F (x) dx

∣∣∣∣
≤
∫

[0,c]

|H(x)− F (x)| dx

≤ δ,

which establishes the claim.
We establish the continuity of the function Wλ on F . We have the following chain

of inequalities,

|Wλ(H)−Wλ(F )| ≤
∫

[0,1]

|Vλ(∆IH(c))− Vλ(∆IF (c))|
∣∣∣∣∂g∂c (c|λ)

∣∣∣∣ dc
≤ δpλ

≤ ε.

Thus, Wλ is continuous on F . The result follows from the following chain of inequali-
ties,

|W (H)−W (F )| ≤
∫

[0,1]

|Wλ(H)−Wλ(F )| dG(λ)

≤ ε.

QED
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C.5 Proof of Lemma B.5

Proof. Let ζ ∈ [0, 1]. Let M := {m ∈ [0, I ′(ζ−)] : I(ζ) +m(x− ζ) ≤ IF0(x) for all x ∈
[0, ζ]}, and m := minM . We construct an information policy starting from the line
x 7−→ I(ζ) +m(x− ζ), via the next three claims.

(1) m is well-defined. (i) M is nonempty, because 0 ≤ I ′(ζ−) ≤ 1 (which follows
from I ∈ I), I ′(ζ−) ∈ ∂I(ζ−) and I(x) ≤ IF0(x) for all x; (ii) M is closed, because
the mapping m 7−→ I(ζ) +m(x− ζ) is a continuous function on [0, I ′(ζ−)]; (iii) M is
bounded because I ′(ζ−) ≤ 1, from I ∈ I.

(2) There exists θ ∈ [0, ζ] such that IF0(θ) = I(ζ) + m(θ − ζ). If m = 0, then
0 = IF0(0) ≥ I(ζ) ≥ 0. Hence, taking θ = 0 verifies our claim. Let m > 0, and
suppose there does not exist θ ∈ [0, ζ] such that IF0(θ) = I(ζ) + m(θ − ζ). There
exists ε > 0 such that: I(ζ) + (m− ε)(x− ζ) < IF0(x) for all x ∈ [0, ζ] and 0 < ε ≤ ε.
Moreover, for a sufficiently small ε > 0, we have m − ε ∈ M . Thus, we have a
contradiction with the definition of m.

(3) m ∈ ∂IF0(θ) and I(ζ) +m(x− ζ) = IF0(θ) + (x− θ)F0(θ) for all x. First, we
argue that m ∈ ∂IF0(θ). By convexity of IF0 and definition of θ, x 7−→ I(ζ)+m(x−ζ)

is tangent to IF0 at θ. Thus, m is a subgradient of IF0 at θ. Now, we argue
that I(ζ) + m(x − ζ) = IF0(θ) + (x − θ)F0(θ) for all x. m = F0(θ) because IF0 is
differentiable (by the fact that F0(x−) = F0(x), x ∈ R.) The equality follows because
x 7−→ I(ζ) +m(x− ζ) is equal to IF0 at x = θ.

We define the following function.

Iu : x 7−→


IF0(x) , x ∈ [0, θ]

I(ζ) +m(x− ζ) , x ∈ (θ, ζ]

max{I(ζ) +m(x− ζ), IF (x)} , x ∈ (ζ,∞).

Now, we claim that Iu = Iθ. It suffices to show that: (i) for some xu ∈ [0, 1]

Iu(x) =


IF0(x) , x ∈ [0, θ]

IF0(θ) + (x− θ)F0(θ) , x ∈ (θ, xu]

IF (x) , x ∈ (xu,∞),

and (ii) Iu ∈ I. We claim that (i) holds by means of the next three claims.
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There exists xu ∈ [ζ, 1] such that:

I(ζ) +m(x− ζ) ≥ IF (x) , x ∈ [0, xu]

I(ζ) +m(x− ζ) ≤ IF (x) , x ∈ (xu, 1].

Let’s note that: (a) I(ζ) ≥ IF (ζ); (b) by m ∈ ∂IF0(θ) and IF0(1) = IF (1), we have
that IF (1) ≥ I(ζ) +m(1− ζ), and (c) the two functions, x 7−→ I(ζ) +m(x− ζ) and
IF , are affine with slopes, respectively, m and 1, such that: m ≤ 1.

We proceed to verify that (ii) holds, i.e. Iu ∈ I, via the next two claims.
(1) IF (x) ≤ Iu(x) ≤ IF0(x) for all x ∈ R+ and Iu locally convex at all x /∈ {θ, xu}.

If x ∈ [0, θ), Iu is locally convex and IF (x) ≤ Iu(x) ≤ IF0(x). If x ∈ (θ, ζ), Iu is affine,
IF (x) ≤ I(x) ≤ Iu(x) by construction of Iu and definition of I, and Iu(x) ≤ IF0(x)

by m ∈ ∂IF0(x). If x ∈ [ζ,∞), I is locally convex (because it is the maximum of
affine functions), IF (x) ≤ Iu(x) by construction of Iu, Iu(x) ≤ IF0(x) because: (i)
m ∈ ∂IF0(ζ) and (ii) IF (x) ≤ IF0(x). To verify global convexity, it suffices to verify
the next claim.

(2) Iu is subdifferentiable at x ∈ {θ, xu}. First, we argue that m is a subgradient
of Iu at θ. This follows from the fact that the slope of Iu at θ is a subgradient of
IF0 at θ, and Iu(θ) = IF0(θ). On [0, θ], Iu = IF0 , and on [θu,∞) Iu is above the line
x 7−→ I(ζ) +m(x− ζ). Thus, m ∈ ∂Iu(θ). Second, the fact that m is a subgradient
of Iu at xu follows from the definition of xu.

We established that Iu(x) = Iθ(x) for all x ∈ [0, 1]. (1.) and (2.) hold by
construction. QED
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