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This paper introduces a framework to study coordination in highly uncertain
environments. Coordination is an important aspect of innovative contexts,
where: the more innovative a course of action, the more uncertain its outcome.
To study the interplay of coordination and informational “complexity”, this
paper embeds a beauty-contest game into a complex environment. I identify
a new conformity phenomenon. This effect may push towards exploration
of unknown alternatives, or constitute a status quo bias, depending on the
network structure of the players’ interaction. Applications of the model include
oligopoly pricing and centralization in organizations.
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1 Introduction

Coordination poses challenges in highly uncertain environments. Consider retailers
that share the same manufacturer and choose marketing campaigns, as in co-op
advertising (Jørgensen and Zaccour, 2014). Innovative advertisement comes with
uncertainty about the brand image of the manufacturer. Moreover, retailers need to
coordinate their advertisements and succeed in distinct markets. Does uncertainty
lead to a unified brand image, and do the campaigns align with the manufacturer’s
interests? Coordination is also an important aspect of technological innovation. For
example, hospitals find it advantageous to adopt popular electronic medical record
systems in the U.S. (Lin, 2023). Does uncertainty lead to innovation? This paper
studies coordination problems in the face of “incremental” uncertainty, referred to as
complexity, such that: the more innovative a decision, the more uncertain its outcome.

This paper introduces a model of coordination in a complex environment. In the
model, every player wants the outcome of her action to be close to a target. The
target of a player combines her fixed favorite outcome with the individual outcomes
of the opponents, leading to a coordination-adaptation tradeoff. A given network of
players determines how a target weighs individual outcomes. Analogous coordination
motives arise in oligopolies, organizations, and labor markets (Topkis, 1998; Marschak
and Radner, 1972; Diamond, 1982).

The complexity is modeled as uncertainty about how actions translate into
outcomes. This approach captures the idea that more innovative actions lead to more
volatile outcomes. This type of uncertainty involves a status quo and a covariance
structure. The status quo is an action leading to relatively low uncertainty. The
covariance structure describes the likelihood that two actions yield similar outcomes.
For example, complexity is relevant when deciding about the adoption of novel pricing
strategies and how boldly to innovate in new technologies. Players simultaneously
choose policies and there is an outcome function determining the outcome of every
policy. Players know that the outcome function is the realized path of a Brownian
motion. The initial point of the Brownian motion represents the status quo: a known
outcome corresponds to the “initial” policy. Instead, different policies than the status
quo lead to outcomes that are known only up to a noise. The more an outcome differs
in expectation from the status-quo outcome, the higher its variance; this approach to
modeling complex environments is introduced by Callander (2011a).

The interplay of coordination and complexity leads to a novel conformity phenomenon.
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In particular, expected outcomes are closer across players than in an environment
without complexity, in all equilibria when the network is complete. This conformity
occurs in addition to the status-quo bias identified by Callander and the conformity
merely due to coordination motives. To separate the new conformity from previously
studied phenomena, I decompose equilibrium expected outcomes in terms of three
elements: the equilibrium outcomes in a non-complex environment, the status-quo
bias in the absence of strategic interaction, and a new conformity effect arising from
the interplay between complexity and coordination.

The new element in the equilibrium characterization arises from an endogenous
leader-follower relationship among players introduced by the covariance structure.
Consider the two ways in which the policy of a player influences the incentives of
her opponents. First, policies define the expected targets of players. Second, the
policy of a player determines the correlation between her outcome and her opponents’
outcomes. The follower in a pair of players is the one with the closest policy to the
status quo. Given a pair of players with different policies, the only player whose
policy directly affects the covariance is the follower, not the leader.1 As a result,
the follower has an extra incentive to explore by choosing a policy in the direction
of the leader. The new incentive of the follower is the source of conformity. The
leader-follower relationship induces an asymmetry among players that interacts with
the network of connections: the follower is pulled away from the status quo by the
leader, whereas the leader is pushed towards the status quo.

Conformity has a rich interaction with the network of players. A player may exert
substantial influence on a follower player. This influence can be so strong that it steers
the follower away from a third player. In this case, “counter-formity” emerges, leading
to expected outcomes that are more distant across players than in the no-complexity
case. In general, the leader-follower relationship is determined in equilibrium. The
equilibrium decomposition serves to verify that a certain leader-follower structure
can be sustained.

Conformity increases in the complexity of the environment, whenever two players
exist who are the leader and the follower for each of their opponents. The measure of
complexity is the additional uncertainty implied by a change in expected outcome

1This property is due to independent increments, a reasonable assumption in innovative contexts
owing to a maximum-uncertainty principle (Jovanovic and Rob, 1990). Other Gaussian processes
have covariance structures that lead to leader–follower-like relationships; e.g., the Ornstein-Uhlenbeck
covariance between two “outcomes” is increasing only in one of the two “policies”.
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away from the status quo.2 The intuition for the comparative statics follows from
the leader-follower relationship: matching the outcome of a leader becomes more
“cost-effective” for a follower, relative to targeting a favorite outcome, as complexity
increases. This comparative statics is consistent with findings in social psychology.
Since Asch (1951), psychologists observe that conformity “is far greater on difficult
items than on easy ones.” The “difficulty” is typically obtained by asking experimental
subjects about their “certainty of judgement” (Krech et al., 1962).

New coordination problems arise in complex environments. The source of
equilibrium multiplicity is the presence of endogenous “kinks” in payoffs. Intuitively,
there is a premium to choosing the same policy as another player because two
individual outcomes are the same if the policies are the same. Hence, coordination
problems are linked to the leader-follower relationship: by choosing the same policy as
an opponent, a player nullifies the asymmetry. The location of the kinks is determined
in equilibrium: a player’s payoff has a kink at every policy of an opponent. The
game admits a “potential” with a unique maximizer, which acts as an equilibrium
selection (Monderer and Shapley, 1996).3 I leverage the characterization of the
potential-maximizer equilibrium to study welfare, select among multiple equilibria,
and for comparison with the no-complexity case (without complexity, the unique
equilibrium maximizes the potential.) In a two-type network, a decrease in inter-group
heterogeneity below a cutoff triggers coordination problems: every player faces an
interval of policies sustainable in equilibrium. This result is important for policy
interventions that change favorite outcomes of players (Galeotti et al., 2020): certain
interventions may bring about coordination problems. The equilibrium selection
allows to retrieve the heterogeneity between groups given such homogeneous behavior.
In particular, extreme conformity is observationally equivalent to the optimal choice
of a representative player. The equilibrium selection pins down the weighted average
of favorite outcomes that constitutes the “representative” favorite outcome.

Complexity has implications for the management of organizations with decentralized
authority, encompassing practices such as co-op advertising and multi-branding.
Division managers face a trade-off between coordinating other managers and adapting
to idiosyncratic needs. Moreover, communication frictions create uncertainty in

2Letting µ and ω be the drift and variance parameters of the Brownian motion, respectively, the
measure of complexity is ω/(2|µ|).

3Uniqueness of the potential-maximizer equilibrium obtains jointly with the multiplicity of
equilibria because the potential is not smooth. Specific nondifferentiable potentials are studied as
counterexamples to the results for smooth potentials (Radner, 1962; Neyman, 1997).
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the implementation of managerial instructions. I show that an organization with
decentralized authority can implement profit maximization in sufficiently complex
environments. Hence, complexity provides a rationale for decentralized organizations.4

I separately identify the role played by the variance and the covariance of the
environment in a general model in which players have “correlated” outcome functions.
In particular, the interplay between coordination and complexity takes the form of
a linear combination of two effects in the decomposition of equilibrium expected
outcomes. First, a pure status-quo bias, which arises with uncorrelated outcomes
across players. This effect pushes every player towards the status quo and is magnified
by the network of players. Second, a pure experimentation motive that arises only
with correlated outcomes. This effect pulls players away from the status quo and is
introduced by the correlation component.

Related Literature I borrow the model of complexity from the literature initiated
with Callander (2011a), studying a dynamic exploration-exploitation tradeoff using
a Brownian motion. The main role of the covariance structure in the dynamic
interaction is to discipline learning over time. Cetemen et al. (2023) study a similar
complex environment in which discoveries are correlated over time and members of a
team contribute resources for exploration. I contribute to the complexity literature
by studying coordination motives and network games. I also show that the status-quo
bias survives the introduction of coordination motives and incomplete information
about a heterogeneous status quo (Appendix C contains the incomplete-information
model with a heterogeneous status quo across players.) Other work considers strategic
interactions and Gaussian processes. In particular, the covariance structure has a
direct role in Bardhi and Bobkova (2023) and Bardhi (2023), in which a principal
incentivizes agents to provide information about the underlying outcome function.
These authors study covariances that are characterized by the “nearest-attribute”
property, including the Brownian covariance.5 I focus on the Brownian covariance

4This result complements the literature that studies informational asymmetries within
organizations, see, e.g., Alonso et al. (2008); Rantakari (2008); Dessein and Santos (2006); the
present model is biased towards favoring centralization because it abstracts away from division
managers’ private information.

5Other strategic settings include: the dynamic models in Callander and Matouschek (2019),
Callander and Hummel (2014), and Garfagnini and Strulovici (2016), which analyze intertemporal
interactions; the communication models in Callander (2008), Callander et al. (2021), and Aybas and
Callander (2023), in which a sender informs a receiver about the outcome function; and the electoral
competition in Callander (2011b). Gaussian processes are used in a similar way as in the complexity
literature to study innovation, price rigidity, and in psychology (Jovanovic and Rob, 1990; Ilut and
Valchev, 2022; Ilut et al., 2020; Anderson, 1960).
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because of two characteristics. First, the Brownian covariance preserves the strategic
complementarities of the coordination game (Lemma 1); second, this covariance
contains the leader-follower asymmetry that explains conformity in a simple way,
described in Section 3. Other covariances are “asymmetric” but not supermodular (e.g.,
squared-exponential covariance), and vice versa (squared-polynomial). Garfagnini
(2018) studies the rich welfare properties of the Brownian-motion structure for a
network game with a “trivial” covariance structure: the decision-outcome mappings
are drawn from player-specific independent Brownian motions. (Section 5 describes
the generalization of the model with imperfectly correlated outcome functions.)

The literature on coordination games with quadratic ex-post payoffs includes
models of oligopolistic competition, peer effects, and network games (Jackson and
Zenou, 2015). Complexity introduces coordination problems under the standard
upper bound on the strength of coordination motives. Moreover, complexity makes
best responses nonlinear. The nonlinearity is due to the kinks in expected payoffs and
implies that equilibrium strategies do not have constant slope in the heterogenous–
status-quo game.6

Outline Section 2 describes the model and Section 3 studies conformity. Section
4 contains applications. Section 5 discusses generalizations and concludes. The
Appendix contains the general model and proofs.

2 Model

2.1 Players and payoffs

Every player i ∈ N := {1 . . . n} has preferences over profiles of outcomes. An outcome
profile is a list of individual outcomes, x = (x1, . . . , xn) ∈ Rn. The payoff to player i
from the outcome profile x is

πi(x) = −
(
xi − (1− α)δi − α

∑
j 6=i

γijxj

)2

,

6Typically, quadratic-payoff beauty contests with incomplete information admit a unique
equilibrium, and only linear strategies arise in equilibrium (Radner, 1962; Morris and Shin, 2002;
Angeletos and Pavan, 2007). The study of status-quo heterogeneity does not rely on results valid for
linear best-reply games, and heterogeneity is modeled as an interim Bayesian game. Not all the
results of Van Zandt and Vives (2007) and Van Zandt (2010) can be applied off the shelf, but the
additional structure of preferences leads to measurability of the greatest-best-reply mapping.
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p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

χ

policy (pi)

outcome

Figure 1: The outcome function χ maps individual policies to individual outcomes
and is given by the realized path of a Brownian motion.

in which α ∈ [0, 1) measures the strength of coordination motives, δi is the favorite
outcome of player i, and γij ≥ 0 weighs the connection between player j and player
i. Connections are symmetric, γij = γji for all players i, j ∈ N . Payoffs reflect a
desire for coordination because αγij is nonnegative. Similar payoffs are used to model
organizations, industries, and peer effects in education (Jackson and Zenou, 2015).

Every player i chooses a policy pi ∈ P := [p, p] simultaneously, for p, p ∈ R with
p < p. The outcome corresponding to policy p ∈ P is given by the outcome function
χ : R → R, evaluated at p. The outcome function is the realized path of a Brownian
motion with drift µ < 0, variance parameter ω > 0, and starting point (p0, χ(p0)),
as in Figure 1 (Karatzas and Shreve, 1998, Definition 1.1 and 5.19). Players know
the status-quo policy p0 ∈ (p, p), the corresponding status-quo outcome χ(p0) ∈ R,
µ, and ω. The Brownian motion disciplines the beliefs of players. Player i believes
that χ(p) and χ(q) are jointly Gaussian random variables, for all pairs of policies
p, q ∈ P \{p0}. This structure of uncertainty captures a complex environment because
a player is more certain about the outcome of a policy the closer the policy is to the
status quo (Figure 2). This way of modeling a complex environment is introduced by
Callander (2011a) and the measure of the complexity is k := ω/(2|µ|).

Player i’s payoff from the outcomes corresponding to the policy profile p ∈ P n

is given by πi(χ(p1), . . . , χ(pn)), which we denote by πi(χ(p)). Player i’s expected
payoff from the policy profile p is denoted by Eπi(χ(p)).

2.2 Strategies and equilibrium

The main focus of the paper is the game G(x0), in which the strategy space of
player i is the policy space P and player i’s utility is her expected payoff given
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p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(a) Expected value of outcomes.

p0
q

r

χ(p0)

policy (pi)

outcome

density

(b) Expected value and variance of
outcomes.

Figure 2: Player i believes that outcomes are given by normal random variables with
expectations given by the drift line of the Brownian motion (panel (a)). The closer
the policy r is to the status-quo policy, the lower the variance of outcome χ(r), as in
panel (b).

the status-quo outcome x0 ∈ R. In particular, I study the strategic-form game
〈N, {P,Eπi(χ(·))}i∈N〉 with χ(p0) = x0. The policy profile p is an equilibrium if:

Eπi(χ(p)) ≥ Eπi(. . . , χ(pi−1), χ(qi), χ(pi+1), . . . ), for all qi ∈ P and i ∈ N.

In the specific case of no complexity, which is the limit game when ω = 0, the
policy-outcome mapping is ψ : pi 7→ χ(p0) + µ(pi − p0) and the profile of outcomes
corresponding to the policy profile p is ψ(p).7 An equilibrium without complexity is
a Nash equilibrium of the strategic-form game 〈N, {P, πi(ψ(·))}i∈N〉.

2.3 Discussion and interpretation

Network of players The matrix of connections, Γ := [γij : i, j ∈ N ], is the
adjacency matrix of a network of players, letting γii = 0 for all i ∈ N . I use δ for the
column vector of favorite outcomes, I for the identity matrix andB(M ) := (I−M )−1

for the Leontief inverse of the n-by-n matrixM if I−M is nonsingular. The centrality
7In the equilibrium definition, “. . . , χ(pi−1), χ(qi), χ(pi+1), . . . ” denotes the outcome profile

corresponding to (χ(qi), (χ(pj))j∈N\{i}). Due to strict concavity of pi 7→ Eπi(χ(p)), player i’s best
response is unique (Appendix, Lemma 19) and focusing on pure strategies is without loss.
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of player i is the i-th entry of the column vector β given by

β = (1− α)B(αΓ)δ.

The graph of the network 〈N,Γ〉 provides an interpretation of centrality.8 The ij-the
entry of the Leontief inverse of αΓ counts the walks of every length from node i to
node j and discounts walks of length ` by α`. So, the centrality of player i counts all
“α-discounted” walks starting from i and weighs every walk to player j by (1− α)δj.

Complexity The following formulas help to analyze the implications of the Brownian-
motion structure of uncertainty (Appendix B.2). The parameters of the distribution of
(χ(p), χ(q)) are denoted by Eχ(p), Vχ(p), and C(χ(p), χ(q)), with standard notation.
For all policies p, q ∈ P , we have

Eχ(p) = χ(p0) + µ(p− p0),

Vχ(p) = |p− p0|ω,

C(χ(p), χ(q)) =

min{Vχ(p),Vχ(q)} if p, q ≥ p0 or p0 ≤ p, q,

0 if p > p0 > q or q > p0 > p.

Large changes in individual expected outcomes are associated with high variance of
the corresponding outcomes. The measure of complexity, k, is the additional variance
implied by a marginal movement of the expected outcome away from the status
quo, scaled by 1/2. The covariance expression is due to the independent-increments
property of the Brownian motion, and is determined by the closest policy to the
status quo.

No-coordination benchmark If α = 0, there isn’t any strategic interaction. The
model reduces to the static version of Callander (2011a). In that case, player i’s
optimal policy p∗i trades off closeness of the expected outcome to δi with the variance
induced by the distance of p∗i from the status quo. Hence, player i does not optimally
choose the policy p◦i such that Eχ(p◦i ) = δi — except possibly in the knife-edge case
in which χ(p0) = δi. The optimal policy reflects a status-quo bias, because p∗i is closer
to the status quo than the policy p◦i . To find the optimal policy, player i does not
consider the correlation between outcomes of distinct policies because only her own

8The matrix I − αΓ is positive definite due to Assumption 1 (next section) so centralities are
well-defined and B(αΓ) =

∑∞
`=0 α

`Γ`. Other definitions of Katz-Bonacich centrality do not adjust
by (1− α) or do not include the case of δi 6= 1, i ∈ N .
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p0 p∗i p◦i

δi

δi + k

(p0, x0)

Eχ(·)

policy (pi)

outcome

Figure 3: If α = 0, player i has a unique optimal policy p∗i . The policy p∗i trades off
closeness of the expected outcome to δi with the variance induced by the distance
from the status-quo policy p0. (For this figure: δi = 1, µ = −1/2, ω = 1/2, α = 0, p0 =
0 = p, χ(0) = 2.5, and p ≥ 3.)

outcome is payoff-relevant. In particular, player i’s expected payoff is decomposed as
follows,

Eπi(χ(p)) = −E(χ(pi)− δi)2,

= −(Eχ(pi)− δi)2 − Vχ(pi).

The first equality follows from the definition of πi and the second from mean-variance
decomposition. The variance term is a continuous and piecewise-linear function of
player i’s policy with a kink at the status-quo policy.9 The presence of this kink
leads to a second form of status-quo bias: for an interval of status-quo outcomes, the
optimal policy is the status-quo policy (as in: Callander 2011a; Ilut et al. 2020.)

Coordination and complexity Players take into account the correlation between
outcomes of different policies, because the outcomes of opponents are payoff-relevant.
A given distance in expected outcome from the status quo is “less expensive”, in
terms of uncertainty, for player i if it comes with a high covariance between i’s own
outcome and the outcomes of other players. The interplay of strategic interaction
(α > 0) and complexity of the environment (k > 0) gives rise to endogenous kinks in
expected payoffs. Player i’s expected payoff in the two-player case with δi = 0 and

9I adopt the convention of calling a function linear if it is affine.
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γij = 1, j 6= i, is as follows,

Eπi(χ(p)) = −E(χ(pi)− αχ(pj))2,

= −(Eχ(pi)− αEχ(pj))2 − Vχ(pi) + 2αC(χ(pi), χ(pj))− α2 Vχ(pj).

The mean-variance decomposition is “kinked” due to the presence of covariance terms
if k > 0 and α > 0. The location of the kinks is endogenous: the expected payoff of
player i has a kink at the policy of player j. A second type of kink is located at the
status-quo policy and it leads to the status-quo bias.

No-complexity benchmark The special case of the model without complexity is
essentially equivalent to the linear–best-response game S := 〈N, {R, πi}i∈N〉, studied
in the literature on games played over networks (Ballester et al., 2006). The strategy
profile (β1, . . . , βn) is the unique equilibrium of S (Corollary 2). The result holds
because the best-reply mapping in S is affine and contractive. Furthermore, Neyman
(1997) establishes uniqueness of the correlated equilibrium. With complexity, best
responses are not as smooth because of endogenous kinks, and they admit multiple
equilibria.

Notation The set of strategy profiles, P n, and the set of profiles of opponents’
strategies, P n−1, are endowed with the product order. All partial orders are denoted
by ≤ and < denotes the asymmetric part of ≤. For posets S and T , the function
g : S × T → R exhibits (strictly) increasing differences if t 7→ g(s′, t) − g(s, t) is
(increasing) nondecreasing for all s′, s ∈ S with s < s′. The Hadamard (element-by-
element) product of matrices A and B is denoted by A�B.

2.4 Analysis

The following requirement ensures existence and uniqueness of an equilibrium absent
complexity and is common in the literature on games played over networks.

Assumption 1. Let λ(Γ) denote the largest eigenvalue of Γ, then:

αλ(Γ) < 1.

The requirement bounds the magnitude of overall coordination motives and isolates
coordination problems induced by the introduction of complexity.10 Assumption 1 is

10The square matrix Γ is nonnegative, so λ(Γ) is equal to the spectral radius of Γ (Horn and
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maintained in what follows.
The gameG(x0) inherits the strategic-complementarity feature of the no-complexity

benchmark S.

Lemma 1. For every player i, the expected payoff Eπi(χ(p)) exhibits increasing
differences in (pi,p−i).

Intuitively, the returns to choosing higher policies are increasing in the opponents’
policies. The key observation in the proof leverages the covariance structure given
by the Brownian motion (Section 2.3). When opponents increase their policies, a
higher own policy implies: (i) a closer expected outcome to the opponents’ expected
outcomes, (ii) a change in the volatility of own outcome, and (iii) a change in the
covariance between the outcomes of players. Under the no-complexity benchmark,
only consequence (i) holds, so the change in expected outcome is consistent with the
increasing differences. The willingness to incur volatility stems from variance and
covariance elements, and varies with opponent’s policies. The covariance between two
outcomes is supermodular in the associated policies, as observed in Section 2.3. The
reason is that the player with the least-volatile outcome is “controlling” the covariance
directly, in every pair of players. Thus, if player i is a follower of player j — player i
incurs less volatility than player j —, then she has an incentive to adjust her policy
towards player j’s policy. Moreover, the incentives of the leader player — player i —
are not affected by player j’s policy, except via the target. The different incentives of
leaders and followers, in each pair of players, are the key for supermodularity and are
studies in detail in Section 3 (Figure 5).

Due to strategic complementarities, the set of equilibria is nonempty and admits
an order structure, via known arguments based on Tarski’s fixed-point theorem
(Milgrom and Roberts, 1990; Vives, 1990).

Proposition 1. There exist a greatest and least equilibrium.

The following result characterizes equilibria by decomposing equilibrium expected
outcomes.

Proposition 2. The profile of policies p ∈ (p, p)n is an equilibrium if, and only if:

Eχ(p) = β + bk + α(I − αΓ)−1(Γ�A)1k,

Johnson, 2013, Theorem 8.3.1). To see that the assumption bounds the magnitude of coordination
motives, note that λ(Γ) is nonnegative and nondecreasing in γij , so the upper bound on α is more
stringent if players are more interconnected.
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for a matrix A = [aij : i, j ∈ N ] and a vector b such that aij, bi ∈ [−1, 1] and

bi =

1 if pi > p0,

−1 if pi < p0,
and aij =

1 if pi > pj,

−1 if pi < pj.

The decomposition is stated for equilibria in which all players choose interior
policies, the complete result is in Appendix D. The decomposition provides a tool
to verify whether a policy profile is an equilibrium using the induced expected
outcomes. If the expected outcomes satisfy the decomposition for a matrix A, which
is constrained by the induced location of players in the policy interval, then the policy
profile is an equilibrium.

The three summands that constitute equilibrium expected outcomes are labeled
in order to study the interplay between coordination and complexity:

Eχ(p) = β︸︷︷︸
equilibrium outcomes
without complexity

+ bk︸︷︷︸
status-quo

bias

+α(I − αΓ)−1(Γ�A)1k︸ ︷︷ ︸
additional conformity

effect

.

If k = 0, the decomposition characterizes the unique equilibrium without complexity,
which is determined by the centrality vector. If α = 0, the decomposition characterizes
the unique equilibrium without coordination motives, which is determined by the
vector of favorite outcomes and a status-quo bias term. The interplay of coordination
motives and complexity generates an additional term: the endogenous matrix A,
which keeps track of leader-follower asymmetries in every pair of players.

The decomposition leaves room for multiple equilibria and coordination problems:
possibly for multiple policy profiles there exists a matrixA satisfying the decomposition.
Figure 4 shows that a two-player game admits an interval of policies that can be
sustained in equilibrium. In order to attribute the multiplicity to the interplay
between coordination motives and complexity, the following results focus on the
particular cases of no complexity and no coordination.

Corollary 1. Let α = 0. There exists a unique equilibrium of G(x0). Moreover, the
profile of policies p ∈ (p, p)n is an equilibrium of G(x0) if, and only if:

Eχ(p) = β + bk,
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(δ, p0)

status-quo
outcome (χ(p0))

po
lic

y
(p
i)

Figure 4: If n = 2 and δ1 = δ2 =: δ, then every equilibrium p is symmetric, i.e.,
p1 = p2. The grey area — including black lines and the point (δ, p0) — illustrates the
equilibrium set, represented by player i’s policy, for every status-quo outcome. (For
this figure: n = 2, δ1 = δ2 = 0, µ = −1/2, ω = 1/2, α = 1/3.)

for a vector b such that bi ∈ [−1, 1] and

bi =

1 if pi > p0,

−1 if pi < p0.

Corollary 2. There exists a unique equilibrium of the game G(x0) without complexity.
Moreover, the profile of policies p ∈ (p, p)n is an equilibrium of G(x0) without
complexity if, and only if:

ψ(p) = β.

Remark 1. This remark considers identical players. Coordination problems increase
in α: the equilibrium set grows in the inclusion sense as α increases (Appendix,
Corollary 3; proofs for this remark are in Appendix E.) Let γij = γ and δi = 0 for
all players i, j ∈ N with i 6= j. In every equilibrium p, pi = pj for all players
i, j ∈ N . Moreover, let q(a) and q(a) be, respectively, the policies in the least and
greatest equilibrium when the degree of coordination motives is α = a. If α1 < α2

and q(α1), q(α1), q(α2), q(α2) ∈ (p0, p), then q(α2) < q(α1) and q(α2) > q(α1). For
intuition, suppose the policy space is [p0, p]. Then, the least equilibrium decreases in
α and the greatest equilibrium increases in α for a complete network. As shown in
the Appendix, the equilibrium set for a complete network with δ = 0 gets larger in set
inclusion as α increases. As a result, the greatest equilibrium (i.e., the equilibrium
with the least volatile outcomes) gets closer to the status quo, and the least equilibrium
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(i.e., the equilibrium with the most uncertain outcomes) involves more exploration, as
α increases.

3 Conformity

This section studies the conformity phenomenon that arises because of the interplay
between coordination and complexity. Mathematically, the source of conformity is in
the decomposition of equilibrium expected outcomes (Proposition 2), in which the
endogenous matrix A keeps track of leader-follower relationships.

3.1 Conformity with two players

To develop the intuition, I start with a two-player example. Furthermore, assume
that the favorite outcomes are sufficiently distant, δ1 − δ2 > 2kα/(1 − α). This
restriction ensures that the centralities are strictly ordered, β1 > β2, there exists a
unique equilibrium, p?, and player 1 is the follower.11 Because each policy implies a
unique expected outcome, I treat expected outcomes as the choice variables.

The best response of player i in the game without complexity is the expected
outcome

(1− α)δi + αEχ(pj), (1)

which is a function of the expected outcome of player j. There exists a unique pair
of expected outcomes that induces an equilibrium: (β1, β2) (Corollary 2 and Panel
(a) in Figure 5.)12 The distance between equilibrium expected outcomes is given by
centralities: β1 − β2.

Complexity introduces two elements to the best-response analysis: a status-quo
bias and a leader-follower asymmetry, reflecting variance and covariance features
of the environment. First, consider a model with noisy and independent outcomes
(illustrated in panel (b) of Figure 5, see also Section 5.) In this case, the best response
of player i is the expected outcome

(1− α)δi + αEχ(pj) + k. (2)
11In particular, we obtain p > p?2 > p?1 > p0 for sufficiently large χ(p0) and p. The remaining

cases are considered in Appendix, Section F.
12To make the discussion simpler, best responses are restricted on (Eχ(p), χ(p0)).
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p?1

β2

β1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(a) The equilibrium in the game without
complexity. The expected outcomes are given
by the centrality of players, (β1, β2).

p∗1 p∗2p?1

↑ β2 + 1
1−αk

↑ β1 + 1
1−αk

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(b) Noisy and independent outcomes. The
equilibrium expected outcomes are given by
centrality of players and the adjusted status-quo
bias, (β1+mk, β2+mk). The arrows indicate the
equilibrium status-quo bias: expected outcomes
are higher than in the game without complexity
(panel (a)).

p?1 p?2

↓ Eχ(p?2)

↓ Eχ(p?1)

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(c) Equilibrium in G(x0). The expected
outcomes are given by the decomposition in
Proposition 2, which includes the leader-follower
asymmetry, (β1 +k−k α

1+α , β2 +k+k α
1+α ). The

arrows indicate the extra exploration induced
by the covariance structure: expected outcomes
are lower than in the game without correlation
(panel (b)).

Figure 5: Panel (a) illustrates the equilibrium in the game without complexity.
Panel (b) illustrates the equilibrium when outcomes are noisy but independent
across policies, given Vχ(p) = 0.5p and C(χ(p), χ(q)) = 0, for p, q > p0. Panel
(c) illustrates the equilibrium in the game G(x0) when ω = 1/2. (For the figures:
δ1 = 2, δ2 = 0, µ = −1/2, ω = 1/2, α = 1/3, p0 = 0 = p, χ(0) = 2.5, p > 2.75.)
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The best response shifts upwards with respect to the case of no complexity, i.e.,
expression (1), by the same amount as in the single-player game. An incentive to
stay close to the status quo emerges and there is not any leader-follower asymmetry.
There exists a unique pair of equilibrium expected outcomes:

(
β1 +mk, β2 +mk

)
,

in which m := 1/(1 − α) is a “social” multiplier (Jackson and Zenou, 2015). The
multiplier magnifies the status-quo bias identified by Callander: when player i moves
towards the status quo, player j has an incentive to do the same (due to the presence
of αEχ(pi) in the best response of player j.) Player 1 is a “follower” in the sense
that she incurs less uncertainty than player 2. In equilibrium, the distance between
expected outcomes is pinned down by centralities, β1 − β2, because best responses
shift by the same amount. Hence, an increase in uncertainty alone does not lead to
conformity.

Consider the complex environment in the game G(x0), i.e., with noisy and
correlated outcomes. The best response of player 1 is:

(1− α)δ1 + αEχ(p2) + k − 2αk, (3)

whereas the best response of player 2 is the same as with uncorrelated outcomes,
i.e., expression (2). The introduction of correlation makes player 1 willing to explore
more. Hence, the follower has an incentive to “catch up” with the leader. This
incentive clashes with the push towards the status quo. This exploration motive
is reflected by a downward shift of the best response of player 1 — relative to the
uncorrelated-outcomes case of expression (2). There is a unique equilibrium p? for
the given leader-follower relationship, described by the pair of expected outcomes
(β1 + k − k α

1+α , β2 + k + k α
1+α). In general, the equilibrium exhibits three features.

(1) Additional conformity arises due to complexity. In particular, it holds that

Eχ(p?1)− Eχ(p?2)− (β1 − β2) < 0.

(2) The new conformity increases (locally) in complexity. The difference in
expected outcomes, netting out the no-conformity difference β1 − β2, is:

Eχ(p?1)− Eχ(p?2)− (β1 − β2) = −2 α

1 + α
k.

Strict monotonicity is local. Specifically, if complexity exceeds the cutoff implied
by our requirement — i.e., δ1 − δ2 > 2kα/(1 − α)) —, then players have the same
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equilibrium expected outcome.
(3) The leader “pulls” the follower away from the status quo. With the introduction

of complexity, the follower faces two new incentives. First, she is pushed towards
the status quo, via the status-quo bias that is present also without correlation in
outcomes. Second, she is pulled away from the status quo, via the conformity that is
introduced by the covariance structure. The interplay between the covariance of the
environment and coordination motives leads to an extra exploration incentive, which
“controls” for the variance effect that is isolated in the uncorrelated-outcomes case
(Figure 5).

In general, conformity is “scaled” by the correlation between outcomes. In
particular, suppose two Brownian motions, with same initial points, drift and variance,
that are correlated with parameter ρ (see Section 5.) The best response of the leader
is identical to the no-correlation case (expression 2), whereas the best response of the
follower is

(1− α)δ1 + αEχ(p2) + k − 2αρk,

in which the follower’s exploration motive is scaled by ρ. Hence, the higher the
correlation, the stronger the conformity effect. In particular, Eχ(p̃1) − Eχ(p̃2) −
(β1 − β2) = ρ(−2 α

1+αk), in an equilibrium p̃. The presence of a nontrivial covariance
structure induces players to explore more without sacrificing coordination.

3.2 Pairwise conformity

Under a complete network, complexity unambiguously leads to a strong form of
conformity that holds for all pairs of players and equilibria of G(x0).

Lemma 2. Let γij = γ for all players i, j ∈ N with i 6= j, and p ∈ (p, p)n be an
equilibrium. If pi < pj, then:

Eχ(pi)− Eχ(pj) < βi − βj.

The above result compares the expected outcomes of every pair of players
in equilibrium to the no-complexity case, across equilibria. The introduction of
complexity makes players choose closer policies.

An equilibrium p is ordered if it satisfies p0 < p1 < p2 < · · · < pn < p. Equilibria
are naturally ordered by the primitives of certain applications. In oligopolistic
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0 γL γ23 γH

0

γ12

C12

C13

C23

Figure 6: The additional conformity is defined by Cij = Eχ(p?i )−Eχ(p?j)−βi +βj , for
players i, j ∈ N in an equilibrium p?. Suppose that there exists a “middle” player,
player 2. In particular, player 2 is the follower to player 3 and the leader to player 1. If
the connection between player 1 and 2 is sufficiently weak (γ12 < γL), the middle player
values the pull of the “global leader” more than the push towards the status quo of the
global follower. As a result, counterformity arises between player 1 and 2. A similar
phenomenon occurs between player 2 and 3 when γ12 is sufficiently large. (For this
figure: n = 3, γ23 = 0.2, γ13 = 0, δ1 = 1, δ2 = 0, δ3 = −1, k = 2, α = 0.45, p0 = 0 = p
and sufficiently large x0, p.)

competition, for instance, demand intercepts and marginal costs order equilibrium
prices (Section A.1). For ordered equilibria, conformity (locally) increases with the
complexity of the environment.

Lemma 3. Let γij = γ for all players i, j ∈ N with i 6= j, and p ∈ (p0, p)n be an
ordered equilibrium. Then, for all i ∈ {1, . . . , n− 1},

Eχ(pi)− Eχ(pi+1) = βi − βi+1 − 2 αγ

1 + αγ
k.

The comparative statics holds locally. If the conformity motive is sufficiently strong,
the difference in favorite outcomes does not sustain the leader-follower asymmetry.
This is the case, for instance, if complexity exceeds the cutoffs implied Lemma 3. In
this case, extreme conformity arises: the relevant players choose the same policy.

3.3 Counterformity

Conformity interacts with the network of players. A player may exert substantial
network influence on a follower player. If this influence is strong enough, it drives
the follower away from a third player. “Counter-formity” emerges when equilibrium
expected outcomes in a pair of players are more distant than in a non-complex
environment. This situation is illustrated in Figure 6.
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In general, conformity has a nuanced interaction with the network of players,
which is described intuitively relying on the leader-follower asymmetry. Consider
an ordered equilibrium. Player n is a leader for every other player, whereas player
1 is a follower for every opponent. The first term of the infinite sum induced by
α(I−αΓ)−1(Γ�A)1k, i.e., αk(Γ�A)1k, represents a “first-order” conformity effect.
Player n’s opponents are choosing policies closer to the status quo than her, whereas
player 1’s opponents are incurring more uncertainty than him.13 Hence, player n has
an additional incentive than player 1 to choose a policy close to the status quo. This
incentive is an endogenous status-quo bias for player n, relative to player 1, because
it is determined in equilibrium. I tentatively define the “extra status-quo bias” for
player n that takes into account the connections among players by averaging the
entries in the nth row of A, each weighted according to the connection of player n
with the corresponding opponent; this average yields

∑
j

anjγ
nj > 0.

The same intuition leads to an “extra exploration motive” for player 1,

∑
j

a1jγ
1j < 0.

The vector αk(Γ�A)1 collects these first-order incentives of all players scaled by
αk. The complete intuition takes into account how the extra status-quo biases and
exploration motives feed into the network of players. The resulting equilibrium
conformity effect is

(Γ�A)1αk + αΓ(Γ�A)1αk + (αΓ)2(Γ�A)1αk + . . . ,

which yields the vectorB(αΓ)(αΓ�A)1k, present in the decomposition of equilibrium
expected outcomes. Thus, player i’s conformity effect counts all the discounted walks
starting from i and weighs each walk to player j by the endogenous status-quo bias
αk

∑
` aj`γ

j`.
As the next result suggests, heterogeneity in network connections is related to

counterformity. We say that Γ is a line if: (i) γii+1 = 1 for all i ∈ {1, . . . , n − 1},
(ii) γii−1 = 1 for all i ∈ {2, . . . , n}, and (iii) γij = 0 otherwise. In a line network,

13This configuration of players implies that anj = 1, j 6= n, and a1k = −1, k 6= 1 (Proposition 2).
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conformity emerges pairwise, and it increases in complexity. (In Figure 6, Γ is a line
only when γ12 = γ23, in which case there is “only” conformity.)

Lemma 4. Let Γ be a line, α ≤ 1/2, and p ∈ (p0, p)n be an ordered equilibrium.
Then, for all i ∈ {1, . . . , n− 1},

Eχ(pi)− Eχ(pi+1) = βi − βi+1 − cik,

for some ci > 0.

Remark 2. The design of network interventions studies changes in favorite outcomes
that induce certain equilibrium behavior of players (Galeotti et al., 2020). Suppose
an ordered equilibrium in a complete network or in a line. Moderate changes in
favorite outcomes do not affect conformity. Hence, if a policymaker adopts a “small”
intervention, the presence of complexity does not lead to unintended consequences: the
results about optimal interventions under a “small budget” are robust to a low level of
complexity. Substantial interventions, on the other hand, change the leader-follower
relationships, and, so, the pattern of conformity.

4 Applications

Incremental uncertainty and coordination motives are present in many economic
environments.

• In social psychology, it is documented that conformity increases in the difficulty
of the task and in the cohesion of the group. By the comparative statics,
conformity increases in the strength of coordination motives and the number of
players, consistently with the observation that “yielding to the group pressures”
is frequent for high “group cohesion” and “group size” (Krech et al., 1962).14

• Peer recognition is important in scientific research (Partha and David, 1994).
In general, coordination motives are present in certain interactions in which
exploration of unknown alternatives is important. If society values exploration,

14The main comparative statics is in Lemma 3, a simple corollary is that “overall” conformity
increases in the number of players: Eχ(p1)− Eχ(pn) = βi − βi+1 − 2(n− 1) α

1+αk. Similar results
follow from Lemma 4.
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conformity may limit learning about the underlying outcome function.15 The
presence of conformity is important for the design of incentives for research and
innovation.

• The management of every subsidiary of a holding company coordinates with
other subsidiaries and adapts to idiosyncratic circumstances. Communication
frictions are a source of noise in the implementation of production processes. This
noise may be particularly relevant for the adoption of innovative technologies.
In Section 4.3, I show that an organization with decentralized decision-making
can implement profit maximization in sufficiently complex environments.

• In oligopolistic competition, firms that rely on algorithmic pricing face uncertainty
over their own listed prices. This uncertainty arises because an algorithm
conditions prices on data not available when the algorithm is selected (Brown
and MacKay, 2023). Price competition exhibits strategic complementarities
in many models of oligopoly. Appendix A.1 proposes a model in which firms
choose pricing policies knowing the resulting listed prices up to some noise,
reflecting market uncertainty or the recent introduction of algorithmic pricing.
Complexity leads to less dispersed expected prices across products, by leveraging
Lemma 3 and a natural ordering property of equilibrium policies. If the net
demand intercepts are sufficiently heterogeneous, then every equilibrium is
ordered; this situation arises if firms are sufficiently different in their production
efficiency.

4.1 Equilibrium selection

A game is a potential game if it is “best-response equivalent” to an auxiliary game
that is a common-interest game (definitions are in the Appendix.)

Proposition 3. The game G(x0) is a potential game, with a potential given by the
function V : P n → R such that

V (p) = E
[
2(1− α)δTχ(p)− χ(p)T(I − αΓ)χ(p)|χ(p0) = x0

]
.

15In Brownian-motion models, however, learning occurs in two ways: radical and incremental
experimentation, given, respectively, by the extreme (max{p1, . . . , pn} and min{p1, . . . , pn}) and
non-extreme policies that are chosen (similarly to Garfagnini and Strulovici (2016).) If conformity
increases, less is known about radical experimentation, but, possibly, more about incremental
experimentation.
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Moreover, the potential-maximizer policy profile, i.e., p? ∈ Arg maxp∈Pn V (p), has
the following properties:

(1) The policy profile p? is an equilibrium.

(2) If P = [p0, p], then there exists a unique potential maximizer.

First, I establish von-Neumann-Morgenstern equivalence (Morris and Ui, 2004)
between the two strategic-form games played in the outcome space with utility
functions {π1, π2, . . . , πn} and {v, v, . . . , v}, in which v(x) = 2(1− α)δTx− xT(I −
αΓ)x. This result extends to the induced games played in the policy space, and so
it establishes that G(x0) is a potential game, a fortiori. Part (1) follows because a
strategy profile that maximizes a potential is an equilibrium of the corresponding
potential game (Radner, 1962). Moreover, the potential for G(x0) is uniquely defined
up to a constant term because V is an exact potential (Monderer and Shapley, 1996,
see Appendix D.) These two observations imply that the potential maximizer provides
a valid equilibrium selection for G(x0). Strict concavity on [p0, p] leads to existence
and uniqueness of the potential maximizer.

The potential maximizer can be decomposed as in Proposition 2 by studying the
superdifferential of V . The main difference with Proposition 2 is the skew-symmetry
property of the endogenous matrix A that implies the uniqueness result.

Proposition 4. Let P = [p0, p]. The policy profile p ∈ (p0, p)n is a potential
maximizer if, and only if:

Eχ(p) = β + 1k + α(I − αΓ)−1(Γ�A)1k,

for a skew-symmetric matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1] and aij = 1,
if pi > pj.

The uniqueness and characterization of the potential maximizer allow to make
predictions using the potential maximizer as equilibrium selection. The selection
is useful precisely due to complexity. If k > 0, the strictly concave potential is
not smooth and there are multiple equilibria. In particular, the potential V is not
differentiable whenever pi = pj for a pair of players, due to the covariance structure
(Section 2.3 and B.3.) If k = 0, the potential is differentiable and there exists a
unique equilibrium: the potential maximizer.16

16To establish this observation, it suffices that: if p◦ ∈ Pn satisfies ψ(p◦) = β, then it maximizes
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In order to study different games in which a similar equilibrium analysis holds, I
define an auxiliary utility function of player i over outcomes, vi(x) = 2(1− α)δixi −
x2
i + 2α∑j∈N γ

ijxixj. The next result studies the strategic-form game F (x0), in
which players and strategy spaces are the same as in G(x0) and utility functions are
Ev1(χ(·)), . . . ,Evn(χ(·)).

Lemma 5. For every player i ∈ N , there exists a function gi : P n−1 ×R → R such
that:

Eπi(χ(p)) = Evi(χ(p)) + gi(p−i, x0) for all p ∈ P n, x0 ∈ R.

The game F (x0) has the same set of equilibria as G(x0) because the games are
von-Neumann-Morgenstern equivalent. The applications that follow leverage this
observation.

I study the welfare in the game F (x0) using the tools developed for the maximization
of the potential of G(x0). A welfare maximizer is a policy profile that maximizes
utilitarian welfare in F (x0), i.e., p ∈ Arg maxp∈Pn W (p), in whichW : p 7→ ∑

i Evi(χ(p)).

Proposition 5. Let P = [p0, p] and 2αλ(Γ) < 1. There exists a unique welfare
maximizer. Moreover, the policy profile p ∈ (p0, p)n is a welfare maximizer if, and
only if:

Eχ(p) = (1− α)B(2αΓ)δ + 1k + 2αB(2αΓ)(Γ�A)1k,

for a matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1], aij = −aji, and aij = 1 if
pi > pj.

The proof uses the known observation that welfare maximization is equivalent to
the maximization of the potential of an auxiliary game in which cost externalities are
doubled — F (x0) is a coordination game in which players do not fully internalize the
externality of their policy.

p 7→ v(ψ(p)) on Pn. The claim is established by showing that p 7→ v(ψ(p)) is a potential for the
no-complexity game S.
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4.2 Application: network of players

I study the game in which every player is part of only one of two groups, A and B,
and players in the same group have the same favorite outcomes and connections.

The parameter γ denotes the connection between a player in group A and a
player in B, by δg, γgg, βg and ng, respectively, the favorite outcome, the weight of an
intra-group connection, the centrality of a player and the number of players for group
g ∈ {A,B}. The two-type network game is the game G(x0) with the restriction just
described. In every equilibrium of a two-type game, player i chooses the same policy
as player j if they are in the same group.17 Hence, an equilibrium is represented by a
pair (pA, pB), such that i ∈ A plays pA, and j ∈ B plays pB. I use αA := αγnB

1−αγAA(nA−1)

and αB := αγnA

1−αγBB(nB−1) . By Assumption 1, αA, αB ∈ [0, 1] and αA+αB−2αAαB

1−αAαB
∈ [0, 1]

(Section F).

Lemma 6. Let βA ≥ βB and (pA, pB) ∈ (p0, p)2 be the unique potential maximizer of
the two-type network game.

(1) If βA − βB ≥ αA+αB−2αAαB

1−αAαB
k, then pA < pB and

Eχ(pA)− Eχ(pB) = βA − βB −
αA + αB − 2αAαB

1− αAαB
k.

(2) If βA − βB ≤ αA+αB−2αAαB

1−αAαB
k, then pA = pB and

Eχ(pA) = αB(1− αA)βA + αA(1− αB)βB
αB(1− αA) + αA(1− αB) + k.

For sufficiently high complexity, conformity is extreme: all players choose the same
policy. In this case, the expected outcome is the same as if a representative player
were choosing an optimal policy, in isolation and with a favorite outcome equal to
αB(1−αA)βA+αA(1−αB)βB

αB(1−αA)+αA(1−αB) , which is a weighted average of centralities in the two groups.

4.3 Application: centralization in organizations

A firm is made of two divisions, each producing a different good. When quantity
produced by division i is xi, the cost of division i is cixi − gx1x2, in which the

17The proof of this result uses the fact that the game G(x0) is a potential game, and that, for given
policies chosen in group g′, the “reduced potential” that includes only members of g is “symmetric”;
see, e.g., Vives (1999), Chapter 2, Footnote 23.
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parameter g > 0 measures the degree of cost externalities and ci > 0. An increase
in the quantity produced by one division reduces the marginal costs of the other
division, as in Alonso et al. (2015). The inverse demand function for product i is
given by ai− 1

b
xi, in which b > 0 measures the price elasticity of demand. The profits

of division i given the profile of quantities x are

πOi (x) :=
(
ai −

1
b
xi − ci + gxj

)
xi.

The CEO’s objective is the maximization of total profits πO1 + πO2 . I impose an upper
bound on the strength of cost externalities for the CEO’s profit maximization to be
well-behaved: bg < 1.18 Each division manager chooses a production policy pi ∈ [p0, p].
The function χ specifies the quantity produced by a division for every production
policy. Division i’s profits given the pair of policies p are given by πOi (χ(p)). The
division managers set production policies simultaneously and independently in the
production game,

〈
{1, 2}, {EπOi (χ(·)), [p0, p]}i∈{1,2}

〉
.

The following result investigates the compatibility of managerial incentives with
total-profit maximization. The analysis assumes that a1 − c1 = a2 − c2 =: â, so
managers choose the same policy in equilibrium and for total-profit maximization
(Section F).

Proposition 6. There exists a unique policy profile pO that maximizes expected total
profits. Moreover, pO is an equilibrium of the production game if and only if:

â
b

1− bg ≤ 2k.

First, I show that the CEO’s objectives are well-defined by studying the maximization
of total profits, which is equivalent to the maximization of utilitarian welfare in the
coordination game between the division managers. The maximization is solved using
Proposition 5 and the equilibrium set is characterized using Proposition 2 and Lemma
5.

The result associates firms with weak cost externalities and operating in complex
environments with a more effective implementation of the CEO’s optimal production
policy. A necessary and sufficient condition to for maximization of total profits to be
implemented in equilibrium is that complexity exceeds the threshold â b

2(1−bg) . The
threshold increases in the net demand intercept â and price sensitivity of demand,

18The Hessian of total profits πOi + πOj is negative definite iff: bg < 1.
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reflecting that the interests of division managers move farther apart from the CEO’s
interests for favorable individual market conditions. The threshold also increases in
g, because the “non-internalized” externalities increase in g.

A reason for the presence of noise in the mapping from production processes to
quantities is frictions in the command chain. Suppose that each division manager
only instructs lower-end division managers about production decisions, who in turn
interact with store managers, and so forth. The division manager is unsure about
how her instructions are communicated along the chain of command and utlimately
implemented. Complexity captures the noise perceived by the division manager; e.g.,
the longer the chain, the less predictable the outcome of the original instruction.
The result suggests that centralized decision-making may be less desirable in the
presence of coordination problems. The analysis points to a responsibility of the
holding company’s management: leveraging the coordination problems induced by
the environment and making maximization of the holding’s profits a focal point for
the management of subsidiaries.

5 Extensions and conclusion

The model can be extended to include player-specific noise sources.19 Suppose that
the outcome function if given by X1 = Y1, for player 1, and by X2 = ρY1 +

√
1− ρ2Y2,

for player 2, given ρ ∈ [0, 1] and a 2-dimensional Brownian motion with independent
coordinates, Y1 and Y2, both of which have drift µ and variance ω. The analysis
in this paper leads to the following characterization of equilibria with two players:
p ∈ (p0, p)2 is an equilibrium if, and only if:

EX(p) = β + (I − αΓ)−1(I + ραΓ�C)1k,

for a matrix C such that Cij ∈ [−1, 0], Cij = 0 if pi > pj and Cij = −1 if pi < pj.
This general model allows for a finer decomposition that separates the two building

blocks of a complex environment: the variance and the covariance of outcomes. The
new term in the decomposition is a linear combination of two components. First, a
pure status-quo bias, which arises with independent outcomes across players (i.e., the

19The extended model is constructed as in Section 2, except that p 7→ πi(χ(pi), χ(pj)) is replaced by
p 7→ πi(Xi(pi), Xj(pj)). The construction generalizes to n players via a suitable linear combination
of the coordinates of an n-dimensional standard Brownian motion (Karatzas and Shreve, 1998,
Definition 5.1 and 5.19, Chapter 2).
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positive vector (I − αΓ)−11k, discussed in Section 3.) This component pushes every
player towards the status quo, and is magnified by the network of players. Second,
a pure experimentation motive, that arises only with correlated outcomes (i.e., the
nonpositive vector (I − αΓ)−1(ραΓ � C)1k.) This component pulls players away
from the status quo.

In strategic interactions with coordination motives, the willingness to take risk
is endogenous. The reason is the incentive to make decisions with “correlated”
consequences — not just with similar consequences in expectation. The interplay
of coordination and complexity manifests itself via a conformity motive and leader-
follower asymmetries. Conformity “pulls” certain players away from the status quo
and “pushes” others towards it. Future research could explore the impact of conformity
for learning. Additionally, this model provides a tool to characterize the conformity
patterns in the networks of innovators identified by theoretical and empirical work
(König et al., 2014; Zacchia, 2020).
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A Additional applications and extensions

A.1 Application: oligopoly pricing
This section describes a model of competition among firms who set pricing policies, or algorithms,
knowing the resulting price only in expectation. In oligopolistic competition, coordination
motives arise from strategic complementarities whenever the incentives to raise prices increase
with the prices of competitors. Moreover, a pricing algorithm may rely on data not available
when algorithmic pricing is adopted (Brown and MacKay, 2023). Hence, complexity arises when
innovative pricing rules are associated with high uncertainty. In this case, conformity takes
the form of concentrated expected prices across firms. The presence of conformity suggests a
downward bias when firm heterogeneity is estimated from price data and the analyst does not
control for complexity.20 The equilibrium decomposition provides a tool for isolating the new
conformity effect.

A representative consumer has quasi-linear preferences over bundles of n+ 1 goods, which
are represented by the quadratic utility function U such that

U(q1, . . . , qn,m) =
∑
i

aiqi −
1
2b
∑
i

q2
i −

1
2c

∑
i,j:j 6=i

qiqj +m,

in which m denotes the numéraire good, and b > c ≥ 0. The last condition serves to study
substitute goods and a well-defined demand system leading to strategic complementarities in
the resulting price-setting firm interaction. The coefficients of the Marshallian demand of the
representative consumer are normalized so that the own-price coefficient is −1 in the demand for
every good i ∈ {1, . . . , n}.21

Each price is set through the decision of one of n firms. Firm i has constant marginal costs
— parametrized by ci — and no fixed costs. We define a strategic-complementarity coefficient
ζ := 1−(b−c)

b−c ∈
[
0, 2

n−1

)
and the net demand intercept for product i, âi := ai−ci−ζ

∑
j 6=i(aj−cj).22

Given a profile of prices net of marginal costs, x, the profits of firm i are

πBi (x) =
âi − xi + ζ

∑
j∈−i

xj

xi.
Each firm chooses a pricing policy pi. The function χ specifies the markup that is eventually

realized from every pricing policy. Firm i’s profits from the policy profile p are given by πBi (χ(p)).
Firms choose pricing policies simultaneously in the pricing game,

〈
N,
{
EπBi (χ(·)), [p0, p]

}
i∈N

〉
.

20Since Bresnahan (1987), a common empirical exercise is to infer the cost parameters from data.
21The Marshallian demand is well-defined because the Hessian of the quadratic form (q1, . . . , qn) 7→

U(q1, . . . , qn,m) is negative definite whenever b > c ≥ 0 Amir et al. (2017). The matrix of demand coefficients
arising from the representative consumer [Dij : i, j ∈ N ] is normalized via Dii = −1; see Section A.1.

22The inequality ζ < 2
n−1 is the content of Assumption 1 in the pricing game under the normalization on demand

coefficients. The inequality ζ ≥ 0 is assumed following the normalization of demand coefficients. These two
constraints are not needed without the normalization, and the normalization is used only to ease the connection
between the game F (x0) and the pricing game; for a formal discussion, see Section A.1.
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There exists a unique vector of equilibrium markups in the pricing game without complexity,
which we denote by βB (Lemma 2 and 5.)

Proposition 7. Let p ∈ (p0, p)n be an equilibrium of the pricing game. If p1 < p2 ≤ · · · ≤
pn−1 < pn, then:

Eχ(p1)− Eχ(pn)− (βB1 − βBn ) = −(n− 1) ζ

2 + ζ
k.

Moreover, if âi − âi+1 > 2ζk for all i ∈ {1, . . . , n − 1}, then: every equilibrium p ∈ (p0, p)n is
ordered such that p1 < · · · < pn, and there exists at most one interior equilibrium.

The impact of complexity on conformity of markup policies is increasing in the level of
complexity and in the strategic-complementarity coefficient in ordered equilibria. The more
substitutable products, the greater the impact of complexity on price conformity, measured by
Eχ(pi)− Eχ(pj)− (βBi − βBj ). The reason is that the strength of strategic complementarities (ζ)
increases in product substitutability c.

The pricing game models “quasi-Bertrand” competition with differentiated products in which
negative quantities and prices are theoretically available, and the consumer’s income is sufficiently
large.23 A reason for the presence of correlated noise in the mapping from pricing policies to
listed prices — or, equivalently, to markups — is that firms buy pricing services from the same
provider.
Proofs for section A.1 A representative consumer has quasi-linear preferences over bundles
of n+ 1 goods, which are represented by the quadratic utility function U such that

U(q1, . . . , qn, z) =
∑
i

âiqi −
1
2b
∑
i

q2
i −

1
2c

∑
i,j:j 6=i

qiqj + z,

in which r denotes the numéraire good. Let B = c11T + (b− c)I be the matrix with b on the
main diagonal and c in off-diagonal entries.

Lemma 7. Let b > c > 0. Then: B is a symmetric and positive definite matrix. Its inverse
B−1 is symmetric, positive definite, its entries given by b−c+(n−1)c

(b−c)[(n−1)c+b] on the main diagonal, and
− c

(b−c)([(n−1)c+b]) in off-diagonal entries.

Proof. B is symmetric. The eigenvalues of 1
b
B are 1− c/b and 1 + n−1

b
c, so B is positive definite.

Then, B−1 is well-defined, positive definite and has eigenvalues (b− c)−1 and (b+ (n− 1)c)−1.
We verify thatB−1 = r11T+ 1

b−cI, for r = − c
(b−c)((n−1)c+b) . Let’s observe that 11T11T = n11T,

and:

BB−1 = I ⇐⇒ r11Tc11T + I + r(b− c)11TI + c

b− c
11TI = I

⇐⇒ rcn11T +
[
r(b− c) + c

b− c

]
11T = I − I

⇐⇒ r = − c

(b− c)((n− 1)c+ b) .

23The probability of negative prices is made arbitrarily small, for sufficiently large status-quo price.
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By normalizing the main-diagonal entries of B−1 to 1, the off-diagonal elements are 1− 1
b−c .

We note that 1 − 1
b−c < 0 ⇐⇒ 1 − (b − c) > 0. Thus, in what follows we assume 1 > b − c.

Moreover, we assume that ζ := 1−(b−c)
b−c < 2

n−1 . Our parameter assumptions are summarized as
follows

Assumption 2 (Demand System 2). We assume that

(1) Goods are utility-substitute and U is strictly concave, which is equivalent to what is assumed
in the main body of the text.

(2) Own-price coefficients of demand are all equal to −1 and that the degree of utility substitutability
c is bounded above by b− n−1

n+1 .

The two assumptions are jointly represented by:

c ≥ 0 and 1 > b− c > n− 1
n+ 1 .

b > c ≥ 0 is equivalent to requiring that the following two conditions jointly hold: (i)
goods are utility-substitute (U is submodular) and (ii) U is strictly concave. The requirement
1 > b− c is needed following the normalization that own-price coefficient of demand is −1, and
1−(b−c)
b−c < 2

n−1 is the content of Assumption 1 in the current setup after the normalization (we
note that 1−(b−c)

b−c < 2
n−1 ⇐⇒ b− c > n−1

n+1). In the following remark, we verify that the additional
assumptions can be dispensed of, which justifies that in the main text we only assume b > c ≥ 0.

Remark 3 (Comparison of Assumption 2 with the model of oligopoly in Section A.1). Under
our assumptions, goods are mutually direct substitutes (Weinstein, 2022), substitutes in the sense
of Hedgeworth, and the Law of Demand (Amir et al., 2017) is satisfied. Moreover, for a positive
price vector v and sufficiently large income, demand for the goods excluding the numeraire is
given by B−1(â− x).

Let’s show that under b > c ≥ 0 the analysis goes through without the extra content in
Assumption 2. First, let’s observe that the concavity assumption on demand — positive definiteness
of B following from b > c ≥ 0 according to Lemma 7 — guarantees positive definiteness of B−1,
and induces a contractive property on the best-response mapping of the game

〈
N, {πBi ,R}i∈N

〉
.

Letting Diag(M ) return an n× n diagonal matrix whose entries are the n elements in the main
diagonal of matrix M , such best-response mapping follows form first-order conditions and is
given by:

BR(x) = −2 Diag(B−1)x+
[
Diag(B−1)−B−1

]
x+B−1â+ Diag(B−1)x̂

= −
[
Diag(B−1) +B−1

]
x+B−1â+ Diag(B−1)x̂.

The Jacobian of BR(x) is given by −[Diag(B−1) +B−1], which is negative definite iff Diag(B−1)+
B−1 is positive definite. The diagonal entries of B−1 are positive (Lemma 7). Thus, the best-reply
mapping is a contraction.
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Secondly, to establish that the normalization on demand coefficients is innocuous, we show
that the coefficients of B−1 are negative, shown in Lemma 7.

We assume that each of the prices of n goods is set by one of n firms that compete in prices.
Each of n firms has constant marginal costs and no fixed costs. LetD := −B−1 = [Dij : i, j ∈ N ]
be the matrix of demand coefficients. Given a profile of prices x̂ and marginal costs m̂, profits of
firm i are:

πBi (x̂) := (x̂i − m̂i)
∑
j∈N

Dij(x̂j − âj)


=
m̂i + âi −

∑
j∈−i

Dijaj

x̂i − x̂2
i +

∑
j∈−i

Dijx̂ix̂j + F,

for a term F = −m̂i

(
âi −

∑
j∈−iDij âj

)
− m̂i

∑
j∈−iDijx̂j that is constant with respect to x̂i. We

can equivalently express profits in terms of markups, x := x̂− m̂, letting a := â− m̂, to write

πBi (x) :=
ai − ζ ∑

j∈−i
aj

xi − x2
i + ζ

∑
j∈−i

xjxi,

for ζ = 1−(b−c)
b−c . In particular, we note that we may set:

2αγij = ζ

2(1− α)δi =
ai − ζ ∑

j∈−i
aj

.
So that the largest eigenvalue of Γ is ζ

2(n− 1) and the content of Assumption 2 is justified in
light of Assumption 1.

Proof of Proposition 7.

Proof. First, the pricing game has the same set of equilibria as the particular case of G(x0) in
which: p−p0, the favorite outcome of i is âi/[2(1−α)], coordination motives are ζ/2 and Γ is the
adjacency matrix of a network in which γij = 1, i ∈ N, j ∈ −i, which we refer to as a complete
network for the present proof. This result follows from Lemma 5. This observation implies the
first part of the proposition via Lemma 3.

Second, let’s establish a property of equilibria. Let p be an equilibrium. By the decomposition
in Proposition 2, if the network is complete and pi = pj, then

(1 + α)[Eχ(pi)− Eχ(pj)] = (1− α)(δi − δj)−mαk,

for m ∈ [0,M ], in which- M = |{` ∈ N : p` ∈ [pi, pj]}|. In particular, a similar derivation is
described in the proof of Lemma 2, and it is omitted in the present proof. From the above
equality it follows that: pi = pj implies that mαk ≥ (1− α)(δi − δj). In the pricing game, then,
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pi = pj implies that

mζk ≥ âi − âj. (4)

Third, we establish that: if mini∈N,j∈−i |âi − âj| > 2ζk, the no two players choose the
same policy in equilibrium. In what follows, we fix an equilibrium p? ∈ (p0, p), and a policy
p ∈ (p?1, . . . , p?n) that is played in equilibrium by a number of players m ∈ {2, n}. For fixed
number of players m ∈ {2, . . . , n} who play the same policy p in equilibrium p?, there exist
players i′, j′ who play p and with

âi′ − âj′ > (m− 1) min
i∈N,j∈−i

|âi − âj| (5)

In particular, this observation holds by taking i′, j′ to be the players choosing, respectively,
min{p?1, . . . , p?n} and max{p?1, . . . , p?n}. Let’s observe that: if mini∈N,j∈−i |âi − âj| > 2ζk, then
mini∈N,j∈−i |âi − âj| > m′

m′−1ζk for all m′ ∈ {2, . . . , n}, so:

(m− 1) min
i∈N,j∈−i

|âi − âj| > mζk.

Hence, if mini∈N,j∈−i |âi − âj| > 2ζk, inequality 4 contradicts inequality 5.
Fourth, we show that the only interior equilibrium in which no two players choose the same

policy is p1 <, . . . , < pn if mini∈N,j∈−i |âi − âj| > 2ζk. By the proof of Lemma 2, if the network
is complete and p ∈ (p0, p)n is an equilibrium with p0 < p1 < · · · < pn < p, then

(1 + α)[Eχ(pi)− Eχ(pj)] = (1− α)(δi − δj)− 2αk,

whenever pi < pj. We note that α < 1 under a complete network, by Assumption 1.
Hence, if mini∈N,j∈−i |âi − âj| > 2ζk and p ∈ (p0, p)n is an equilibrium of the pricing game,

then p0 < p1 < · · · < pn < p up to a permutation of players. Moreover, by the decomposition in
Proposition 2, if mini∈N,j∈−i |âi − âj| > 2ζk there exists at most one interior equilibrium.

�

A.2 Heterogeneous status quo
This section considers an incomplete-information extension of the game G(x0) introduced in
Section 2.

Ex-Post payoffs are the same as in Section 2.1. The following description of interim beliefs
defines a Bayesian game parametrized by a profile of status-quo policies, G(p0), which is defined
explicitly in Section D.

Player i believes that the outcome function χ is the realized path of a Brownian motion
with drift µ < 0, variance parameter ω > 0 and starting point (pi0, χ(pi0)). Every player knows
the profile of status-quo policies p0 = (p1

0, . . . , p
n
0 ) ∈ Rn. The status-quo outcome of player i is

known to player i and not known to her opponents: χ(pi0) is player i’s type. Beliefs are consistent
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with the limit of a common prior over a Brownian motion.24 I denote by Pi the probability of an
event and by Ei the expectation operator induce by player i’s beliefs at a given type χ(pi0) (see
Section B.2.)

Every player simultaneously chooses a policy. In this section, Pi = [p
i
, pi] is the policy space

of player i, for p
i
, pi ∈ R with p

i
≤ pi0 ≤ pi, and P = ×iPi to ease readability, with a slight

inconsistency of notation with respect to the previous sections. A strategy for player i is a
measurable function σi : R → Pi. The set of strategies for player i is denoted by Σi, the set of
strategy profiles by Σ := ×i∈NΣi, and the set of profiles of strategies for players other than i by
Σ−i = ×i∈−iΣj; Σi is endowed with the pointwise order to be a lattice, Σ−i and Σ are endowed
with the product order. The following notation is used, given a profile of strategies of player i’s
opponents σ−i:

(χ(pi), χ(σ−i)) = (. . . , χ(σi−1(χ(pi−1
0 ))), χ(pi), χ(σi+1(χ(pi+1

0 ))), . . . ),

The expected payoff of player i, given σ−i, is

Πi(pi, xi0;σ−i) := Ei[πi(χ(pi), χ(σ−i))]

An equilibrium of G(p0) is an interim Bayesian Nash equilibrium; the definition uses ϕi(xi0;σ−i) :=
Arg maxpi∈Pi

Πi(pi, xi0;σ−i).

Definition 1. The strategy profile σ ∈ Σ is an equilibrium of G(p0) if, and only if:

σi(xi0) ∈ ϕi(xi0;σ−i), for all xi0 ∈ R, i ∈ N.

Remark 1. Consider the game G((p0, . . . , p0)), in which players have the same status-quo policy
p0. This game is effectively the collection of strategic-form games {G(x0)}x0∈R, because the
profile of status-quo outcomes is common knowledge. Hence, the game G(x0) is the subgame of
G((p0, . . . , p0)) starting at χ(p0) = x0.
Results The assumption that status-quo policies are different across players is maintained in
this section.

Assumption 3. Status-Quo policies are different across players: pi0 6= pj0 for all i, j ∈ N with
j 6= i.

Player i’s belief about χ(q) is nondecreasing in χ(pi0) in the sense of first-order stochastic
dominance (FOSD) and satisfies a translation-invariance property studied in Mathevet (2010).25

24Given a Brownian motion with starting point (0, z) and realized path denoted by ξ, suppose that each player
observes the point (pi0, ξ(pi0)) and a signal about z with Gaussian noise that is i.i.d. across players. As the noise
grows, player i’s belief about ξ(q) given ξ(pi0) = xi0 converges to her belief in G(p0) about χ(q) when her type is
χ(pi0) = xi0.

25For notational convenience, in the following result I use the symbol “|”, even though the beliefs of players do
not necessarily arise as conditional probabilities, because G(p0) is an interim Bayesian game.
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Lemma 8. Player i’s belief about the outcome of policy q is nondecreasing in χ(pi0) according to
first-order stochastic dominance. Moreover, player i’s belief satisfies the following translation
invariance property:

Pi{χ(q) < x|χ(pi0) = xi0} = Pi{χ(q) < x+ ∆|χ(pi0) = xi0 + ∆}, for all ∆ ∈ R.

FOSD monotonicity is used to establish the single-crossing property of expected payoffs in
own policy and type.

A more stringent upper bound on the strength of coordination motives than Assumption 1 is
used to establish single-crossing of expected payoffs, which is used for the existence of equilibria
in monotone strategies.

Assumption 4. For every player i,

α
∑
j∈N

γij < 1.

Assumption 4 implies that I −αΓ has strictly dominant diagonal, which is a known sufficient
condition for Assumption 1.

The incomplete-information game G(p0) exhibits strategic complementarities.

Lemma 9. For all i ∈ N , the expected payoff (p, χ(pi0)) 7→ Eiπi(χ(p)) exhibits increasing
differences in pi, pj, j ∈ −i, and exhibits strictly increasing differences in (pi, χ(pi0)).

The upper bound on coordination motives is key for increasing differences in own policy
and type. To establish this property, observe that the right-derivative of pi 7→ Eiπi(χ(p))
is an affine function of xi0, where the coefficient on xi0 is 1 − α

∑
j γ

ij. The upper bound on
coordination motives is necessary for the single-crossing property of expected payoffs in (pi, xi0),
which associates higher policies to higher types.

The following result establishes existence of Bayesian Nash equilibrium in nondecreasing
strategies.

Proposition 8. There exist a greatest and a least Bayesian Nash equilibrium, σ and σ, respectively.
Moreover, σ and σ are profiles of nondecreasing strategies.

Because the type spaces are necessarily unbounded, results from the literature on incomplete-
information games with strategic complementarities do not apply directly. However, I establish
that the expected payoff function pi 7→ Πi(pi, xi0;σ−i) is strictly concave for a profile of
nondecreasing strategies σ−i. Given strict concavity of Πi, compactness of Pi and strategic
complementarities, type spaces can be compactified to establish similar results as Van Zandt and
Vives (2007). In particular, the greatest-best-reply mapping xi0 7→ supϕi(xi0, σ−i) is measurable;
see Lemma 22.)
Remark 2. Let α = 0. From the results in Callander (2011a) and Corollary 1, it follows that: (i)
there exists a unique Bayesian Nash equilibrium, and (ii) in the unique Bayesian Nash equilibrium,
the strategy of each player is nondecreasing in her type.

The following result shows a status-quo effect.
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Lemma 10. For every Bayesian Nash equilibrium in nondecreasing strategies σ and player i,
the following holds:

There exist cutoffs ci1, ci2 ∈ R with ci1 < ci2 such that: σi(x) = pi0 for all x ∈ [ci1, ci2], and
σi(x) 6= pi0 for all x ∈ R \ [ci1, ci2].

There are two takeaways. First, the reason why the slope of equilibrium strategies is not
constant is the presence of a status quo: if the status-quo outcome of player i is in an interval
[xi1, xi2], player i prefers to stick to the status-quo policy, than to incur the uncertainty implied by
a change of expected outcome. This equilibrium behavior is consistent with the optimal strategy
in the game without coordination motives (Corollary 1).

Secondly, equilibrium strategies do not have a constant slope, differently from general models
of beauty contest under incomplete information. Strategies with constant slope are either the
focus or constitute the unique possibility in equilibrium in standard beauty-contest models of
incomplete information. In Lambert et al. (2018) — where the environment is “informationally
complex” because of the arbitrarily large, though finite, dimensionality of the state and type
profile —, the authors establish the existence of an equilibrium in strategies with constant slope.

The following result offers a partial characterization of equilibria in nondecreasing strategies,
using χj for χ(σj(pj0)), given σj ∈ Σj and j ∈ N .

Lemma 11. Let Pi = [pi0,∞) for all i ∈ N . The profile of nondecreasing strategies σ is an
equilibrium if, and only if, the following condition holds. For all i ∈ N and xi0 ∈ R such that
σi(xi0) > pi0, there exists a vector [aij : j ∈ N ], such that:

Eiχi − α
∑
j∈N

γijEiχj = βi − α
∑
j∈N

γijβj + k + αk
∑
j∈N

γijaij,

and aij ∈
[
2Pi{σj(χ(pj0)) < σi(xi0)|χ(pi0) = xi0} − 1, 2Pi{σj(χ(pj0)) ≤ σi(xi0)|χ(pi0) = xi0} − 1

]
.

The next result studies the multiplicity of equilibria, letting d denote the sup-norm distance
between two strategies for player i.26

Proposition 9. The following holds:

max
i∈N

d(σi, σi) ≤ 2kmax
i∈N

α
∑
j γ

ij

1− α∑j γij
1
|µ|
.

By Proposition 8, all equilibria lie between two extreme strategy profiles, σ and σ. Therefore,
the distance between player i’s strategies in any two equilibria is at most the distance between
the extremal equilibria, i.e. d(σi, σi), which is upper bounded by the Proposition.

Remark 4. In Section C.2, I study the game with finite policy spaces. With two players
and finite policy spaces, there exists a unique equilibrium in nondecreasing strategies. The
key step of the proof is the observation that increasing differences — which yield strategic

26The sup-norm of a strategy for a player is well-defined because policy spaces are bounded. Moreover,
equilibrium strategies are continuous and type spaces can be compactified so that the sup can be replaced by the
max (Lemmata 20 and 21).
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complementarities in G(x0) and single-crossing in G(p0) — are constant in own type. This
“constant-type” monotonicity, and the translation invariance and FOSD monotonicity properties
of beliefs suffice establish uniqueness by using the results in Mathevet (2010). Mathevet shows
that, under “translation-monotone” and FOSD-nondecreasing beliefs, a class of coordination
games admits a unique equilibrium because the best-response mapping to nondecreasing strategies
is a contraction.

B Auxiliary results
In this section, we study the properties of payoffs over outcomes defined in Section 2, the outcome
distribution discussed in Section 2.3, and the potential of G(x0). In Section B.2, we extend the
model to study a common-prior model. The analysis maintains Assumption 1.

B.1 Ex-post payoffs
In this section, we study the ex-post payoff functions. Player i ∈ N = {1, . . . , n} has preferences
over outcome profiles x ∈ Rn that are represented by the payoff ui : Rn → R, which takes a
quadratic-loss form:

πi(xi, x−i) = −
xi − (1− α)δi − α

∑
j∈N

γijxj

2

,

in which δi ∈ R, α ∈ [0, 1), γij ≥ 0, and γii = 0.
We note that: πi(xi, x−i) = 2(1− α)δixi− x2

i + 2α∑j∈N γ
ijxixj + hi(x−i), in which hi(x−i) is

constant with respect to xi. Player i’s effort-game payoff is: vi : Rn → R, with

vi(xi, x−i) = 2(1− α)δixi − x2
i + 2α

∑
j∈N

γijxixj.

We let δ and Γ be, respectively, the column vector of favorite outcomes (δ1, . . . , δn)T and the
interactions matrix [γij : i, j ∈ N ]. We let G := αΓ, Q := I −G, b := (1 − α)δ. We define
β := Q−1b. 1 and I denote, respectively, a column vector of ones and the n× n identity matrix.
For a matrix A, we let aij be the entry in the ith row and jth column of A, and ai• be the
column vector corresponding to the ith row of A.

We let x be the column vector given by the outcome profile (x1, . . . xn). We define the
potential v : Rn → R, such that

v(x) = 2(1− α)δTx− xT(I − αΓ)x.

We note that: v(x) = −(x − β)TQ(x − β) + βTQβ. The effort-game utilitarian welfare is∑
i∈N vi, so that ∑

i∈N
vi(x) = 2(1− α)δTx− xT(I − 2αΓ)x.
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The following Lemma states that player i’s payoff is best-response equivalent to the effort-
game payoff and to the potential. In particular, we show that the three strategic-form games
(N, (πi,R)i∈N), (N, (vi,R)i∈N) and (N, (v,R)i∈N) are von Neumann–Morgenstern equivalent
(Morris and Ui, 2004). We adopt the following notational conventions: x denotes (xi, x−i), and
−i := N \ {i}, for all i ∈ N .

Lemma 12 (“V-NM” equivalence). For all i ∈ N , there exist hi, gi : Rn−1 → R such that:

ui(x)− vi(x) = hi(x−i) and ui(x)− v(x) = gi(x−i) for all x ∈ Rn.

Proof. The second result is a consequence of symmetry of Γ. In particular, we note that:∑
(i,j)∈N2 γijxixj − 2∑j∈N γ

ijxixj is constant with respect to xi, and:

πi(x)− vi(x) = −
(1− α)δi + α

∑
j∈N

γijxj

2

,

v(x)− vi(x) =
∑
j∈−i

(
2(1− α)δjxj − x2

j

)
+ α

∑
(i,j)∈N2

γijxixj − 2α
∑
j∈N

γijxixj.

�

B.2 Interim beliefs
In this section, we study player i’s beliefs in the game G(p0), given pi0 6= pj0, for all i, j ∈ N with
i 6= j.

Every player knows the profile of status-quo policies (p1
0, . . . , p

n
0 ) ∈ Rn. Player i privately

knows the outcome corresponding to her own status quo policy: χ(pi0). Player i believes that
the outcome function χ : R → R is the realized path of a Brownian motion with drift µ < 0,
variance parameter ω > 0 and starting point (pi0, χ(pi0)). This belief structure is consistent with
a common prior that is studied in section B.2
Expectation and covariance We define Ei,Vi,Ci as, respectively, the conditional expectation,
variance and covariance operators given knowledge of χ(pi0).

Lemma 13. The following formulas hold. For all policies p, q ∈ R we have:

Eiχ(p) := E
[
χ(p) | χ(pi0)

]
= χ(pi0) + µ(p− pi0),

Viχ(p) := Var
[
χ(p) | χ(pi0)

]
= |p− pi0|ω,

Ci(χ(p), χ(q)) := Cov
[
χ(p), χ(q) | χ(pi0)

]
=

min{Viχ(p),Viχ(q)} if sgn(p− pi0) = sgn(q − pi0),
0 if p > pi0 > q or q > pi0 > p.

Proof. The formulas for the expectation and the variance operators are known in the experimentation
literature (Callander, 2011a). Let’s show that the covariance formula is a consequence of the
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Markov property of beliefs. By the law of iterated expectations:

Ci(χ(p), χ(q)) =E
[
χ(p)E

[
χ(q) | χ(p), χ(pi0)

]
| χ(pi0)

]
− Eiχ(p)E

[
E
[
χ(q) | χ(p), χ(pi0)

]
| χ(pi0)

]
.

Moreover, if q ≥ p ≥ pi0, then: E[χ(q) | χ(p), χ(pi0)] = E[χ(q) | χ(p)], by the Markov property, so
the covariance expression simplifies to

Ci(χ(p), χ(q)) =E
[
χ(p)E[χ(q) | χ(p)] | χ(pi0)

]
− Eiχ(p)E

[
E[χ(q) | χ(p)] | χ(pi0)

]
=E

[
χ(p)(χ(p) + µ(q − p)) | χ(pi0)

]
− Eiχ(p)E

[
χ(p) + µ(q − p) | χ(pi0)

]
=Viχ(p),

in which the second equality uses E[χ(q) | χ(p)] = χ(p) + µ(q − p). Instead, if q > pi0 > p, then:
E[χ(q) | χ(p), χ(pi0)] = E[χ(q) | χ(pi0)], by the Markov property, so the covariance expression
simplifies to

Ci(χ(p), χ(q)) = E
[
χ(p)E

[
χ(q) | χ(pi0)

]
| χ(pi0)

]
− Eiχ(p)E

[
χ(q) | χ(pi0)

]
= 0.

Thus, the covariance formula holds. �

The Brownian motion structure implies that the conditional distribution of χ(p) and χ(q)
given χ(pi0) is jointly Gaussian, for all p, q ∈ R \ {pi0}. The CDF of χ(q) | χ(pi0) is denoted by
F (·, q|χ(pi0), pi0). The next result states that beliefs are monotone in status-quo outcome and
admit an invariance property.
Proof of Lemma 8

Lemma 14 (FOSD and Translation Invariance of beliefs.). For all y, y′ ∈ R such that y ≥ y′,
we have:

F (·, q|y, pi0) ≤ F (·, q|y′, pi0) pointwise for all q, pi0 ∈ R,

moreover: F (x+ ∆, q|y + ∆, pi0) = F (·, q|y′, pi0) for all ∆, x, y, q, pi0 ∈ R.

Proof. Letting Φ be the CDF of a standard Gaussian random variable, we observe that
F (x′, q|y′, pi0) = Φ

(
x′−y′−µ(q−pi

0)√
|q−pi

0|ω

)
. �

Derivatives of variance and covariance terms We define the left and right derivatives of
Viχ(p) and Ci(χ(p), χ(q)) with respect to p, using Iverson brackets ([Y ] = 1 if Y is true, and
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[Y ] = 0 otherwise). First, let’s observe that:

Ci(χ(p), χ(q)) =



(q − pi0)+ω if q < p and p ≥ pi0,

(p− pi0)ω if p ≤ q and p ≥ pi0,

(pi0 − p)ω if q < p and p < pi0,

(pi0 − q)+ω if p < q and p < pi0,

from which it follows that:

∂−Viχ(p) =

−ω p ≤ pi0,

ω p > pi0,
∂+Viχ(p) =

−ω p < pi0,

ω p ≥ pi0,

∂−Ci(χ(p), χ(q)) =

[p ≤ q]ω p > pi0,

−[p > q]ω p ≤ pi0,
∂+Ci(χ(p), χ(q)) =

[p < q]ω p ≥ pi0,

−[p ≥ q]ω p < pi0.

In particular, we have that:

∂Ci(χ(p), χ(q)) =

∂p(min{p, q} − pi0)ω if p ≥ pi0,

−∂p(max{p, q} − pi0)ω if p < pi0.

=


(

1
2 −

1
2∂p|p− q|

)
ω if p ≥ pi0,(

−1
2 −

1
2∂p|p− q|

)
ω if p < pi0.

= 1
2
(
1− 2[p < pi0]− ∂p|p− q|

)
ω

∂Viχ(p) = 1− 2[p < pi0]

Lemma 15 (Concavity of “VCV”). The function pi 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]
is convex on R for all i ∈ N and p?0 ∈ R, and

gi(pi, p−i) := ∂+pi

∑
(i,j)∈N2

qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij∂+pi
|pi − pj|

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij([pi ≥ pj]− [pi < pj]),

and gi(pi, ·) is nonincreasing on Rn−1. Moreover, the function p 7→ ∑
(i,j)∈N2 qij Cov[χ(pi), χ(pj) |

χ(p?0) = x?0]n is convex on [p?0, p]n.

Proof. First, we show that the function f : pi 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0] is
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convex. By definition of Q, we have that:

f(pi) =
∑
i∈N

Var[χ(pi) | χ(p?0) = x?0]−
∑

(i,j)∈N2

gij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]

Thus, for all i ∈ N , assuming ω = 1 without loss of generality, we have:

∂+pi
f(pi) = 1− 2[pi < pi0]− α

∑
j∈N

gij(−∂+pi
|pi − pj| − 2[pi < pi0])− α

∑
j∈N

gij

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij∂+pi
|pi − pj|.

Thus, ∂+pi
f is a nondecreasing function and sof is convex on R (Rockafellar, 1970).

Let’s show the second part of the lemma. Let’s observe that:

p ∈ [p?0, p]n =⇒ f(pi) =
∑

(i,j)∈N2

qij min{pi − p?0, pj − p?0}ω.

Joint convexity follows. �

Common prior In this section, we define a common prior over the outcome function, parametrized
by the amount of noise about the initial value of the Brownian motion. As the noise grows
unboundedly large, the interim beliefs converge to the beliefs of the heterogeneous status quo
game introduced in Section A.2 and analyzed in Section C.
Timeline Let’s describe a timeline of a game. Every player knows the profile of status-quo
policies (p1

0, . . . , p
n
0 ) ∈ Rn.

(1) Nature draws the initial value X(0) from a normal distribution with mean 0 and variance
σ2

0 ≥ 0.

(2) Nature draws the outcome function X : R → R from a Brownian motion with drift µ < 0,
variance parameter ω > 0 and starting point (0, X(0)).

(3) Player i privately observes the realization of signal Si about X(0) and the outcome
corresponding to her own status quo policy: X(pi0).

After (3), players update their beliefs using Bayes’ rule, and then simultaneously choose real-
valued policies. i’s payoff from the policy profile p is ui(X(p1), . . . , X(pn)). We assume that
Si = X(0) + σεi, for σ ≥ 0 and a standard Gaussian random variable εi, and that for all pairs of
players i 6= k, εi is independent from εk and from X(0). To ease on notation, we assume that
ω = 1. In the limit as σ0 →∞ and σ →∞, Bayes’ rule for jointly Gaussian random variables
gives us

E[X(0) | I]→ X(pi0),
Var[X(0) | I]→ pi0.
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To verify the second formula, let’s observe that X(pi0)− µpi0 is an unbiased signal about X(0),
with precision 1/pi0. In particular, for a Wiener process W (·), we have that:

X(pi0)− µpi0 = X(0) + ω(W (pi0)−W (0)),

and W (pi0)−W (0) is Gaussian, centered at 0, with variance pi0. W (pi0)−W (0) is independent
of X(0) and (εi)i∈N by our hypotheses.
Interim beliefs The information structure is parametrized by (σ0, σ). In this section, we
derive interim beliefs as a function of (σ0, σ) and study the behavior as (σ0, σ) → (∞,∞).
Beliefs are described by Gaussian random variables, thus we study the expectation, variance
and covariance terms of the outcomes X(p), X(q) given the realization of (Si, X(pi0)) = I, for
(p, q) ∈ R2, with q ≤ p. We claim that E[X(p) | I]→ E[X(p) | X(pi0)] and Cov[X(p), X(q) | I]→
Cov[X(p), X(q) | X(pi0)] for all (p, q) ∈ R2.

Case 1: 0 ≤ pi0 ≤ q. By the Markov property: E[X(p) | I] = E[X(p) | X(pi0)], E[X(q) | I] =
E[X(q) | X(pi0)], and Cov[X(p), X(q) | I] = Cov[X(p), X(q) | X(pi0)].

Case 2: 0 ≤ q ≤ pi0 ≤ p. By the Brownian bridge properties, E[X(q) | I] = E[X(q) | X(pi0)],
using E[X(0) | I] = X(pi0). By the Markov property: E[X(p) | I] = E[X(p) | X(pi0)]. By the law
of iterated covariance:

Cov[X(p), X(q) | I] = E[Cov[X(p), X(q) | X(0), I]|I]
+ Cov[E[X(p) | X(0), I],E[X(q) | X(0), I] | I],

By the Markov property, both terms on the right-hand side are 0.
Case 3: 0 ≤ q ≤ p ≤ pi0. By the Brownian bridge properties, E[X(q) | I]→ E[X(q) | X(pi0)],

using the formula for E[X(0) | I]. Similarly, we obtain that E[X(p) | I] → E[X(p) | X(pi0)].
Towards using the law of iterated covariance, we observe that, by the Brownian bridge properties

Cov
[
X(p), X(q) | X(pi0), X(0)

]
= (pi0 − p)q

pi0
.

Moreover, for a, b, c, d given by the Brownian bridge properties

Cov
[
E
[
X(p) | X(0), X(pi0)

]
,E
[
X(q) | X(0), X(pi0)

]
| X(pi0), Si

]
=

Cov
[
aX(0) + bX(pi0), cX(0) + dX(pi0) | X(pi0), Si

]
,

from which it follows that:

Cov
[
E
[
X(p) | X(0), X(pi0)

]
,E
[
X(q) | X(0), X(pi0)

]
| X(pi0), Si

]
= abVar[X(0) | I].

By the Brownian bridge properties ab = pi
0−p
pi

0

pi
0−q
pi

0
. Using the law of iterated covariance and the

43



formula for Var[X(0) | I], we observe that

Cov[X(p), X(q) | I]→ (pi0 − p)q
pi0

+ pi0 − p
pi0

(pi0 − q)

→ pi0 − p.

The remaining cases are dealt with similarly.

B.3 Potential
For a profile of policies p ∈ P , we denote the corresponding column vector of outcomes as χ(p),
or χ if the policy profile is unambiguous. In this section, we study the following function:

V (·, x0) : P → R
p 7→ E{v(χ(p))|χ(p0) = x0},

under the assumption that Pi = [p0, p] for all i ∈ N , for given p0, x0 ∈ R. Leting x0 ∈ R, an
element of Arg maxp∈[p0,p]n V (p, x0) is called the potential maximizer given x0.

It will be useful to study f(p, x0) = −V (p, x0), and also to omit the dependence on x0 when
it leads to no confusion. Moreover, we let Eχ(p) = E[χ(p)|χ(p0) = x0].

Lemma 16. f : p→ −V (p, x0) is a strictly convex function on Rn, and

f(p) = (Eχ(p)− β)TQ(Eχ(p)− β) + ωpTQ1 + ω
∑

(i,j)∈N2

gij
|pi − pj|

2 − βTQβ.

Proof. First, we observe that v is a quadratic function of the outcome profile. So, we have the
next chain of equalities:

V (p) = −(Eχ(p)− β)TQ(Eχ(p)− β)−
∑

(i,j)∈N2

qij(min{pi, pj} − p0)ω + βTQβ

= −(Eχ(p)− β)TQ(Eχ(p)− β)−
∑

(i,j)∈N2

qij(pi/2 + pj/2)ω+

+
∑

(i,j)∈N2

qij|pi − pj|ω/2 + βTQβ

= −(Eχ(p)− β)TQ(Eχ(p)− β)+
+
∑
i∈N

(1− gT
i•1)piω −

∑
(i,j)∈N2

gij|pi − pj|ω/2 + βTQβ.

The second equality expresses min{pi, pj} = pi+pj−|pi−pj |
2 , and the third uses the definition of

Q. �

Towards finding the potential maximizer, we find the subdifferential of f , and ∂ denotes the
subdifferential operator with respect to the vector of policies p. By the above Lemma, we have
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that:

∂f(p) = 2µQ(Eχ(p)− β) +Q1ω + ω

2 ∂
∑

(i,j)∈N2

gij|pi − pj|

∂f(p)
2µ = Q(Eχ(p)− β − 1k)− k

2∂
∑

(i,j)∈N2

gij|pi − pj|.

The subdifferential of f is

∂f(p) =
{
y ∈ Rn : y

2µ = Q(Eχ(p)− β − 1k)− (G�A)1k, for some A such that

aij = −aji, pi > pj =⇒ aij = 1, pi = pj =⇒ aij ∈ [−1, 1]
}
.

Let 0 be a column of zeroes and IS : Rn → R be the characteristic function of S ⊆ Rn. By strict
convexity of f and convexity of P , standard results in convex analysis (Rockafellar, 1970) imply
that the potential maximizer is the unique p ∈ P such that:

0 ∈ ∂f(p) + ∂IP (p).

Lemma 17. There exists a unique potential maximizer given x0 ∈ R. Moreover, p ∈ (p0, p)n is
the unique potential maximizer given x0 ∈ R if, and only if:

Eχ(p) = β + 1k + (I −G)−1(G�A)1k,

for some skew-symmetric A = [aij : i, j ∈ N ] such that:

aij = 1 if pi > pj, and aij ∈ [−1, 1] if pi = pj, for all i, j ∈ N.

Proof. For interior p, it is necessary and sufficient that 0 ∈ ∂f(p). The result follows from the
preceding derivation. �

C Proofs for Appendix A.2

C.1 General model
In this section, we study the heterogeneous-status-quo game. We formulate it as a Bayesian game
and study its Bayesian Nash equilibria. The definition of the Bayesian game and of Bayesian
Nash equilibria are in terms of interim beliefs, and follow closely the respective definitions in
Van Zandt and Vives (2007). The following definitions depend on a vector of status-quo policies
p0 such that: pi0 6= pj0, for all players i, j with i 6= j. Thus, the heterogeneous status-quo game
given p0 is G(p0). In this section, we maintain Assumption 4.
Components of the game
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(1) The set of players is N .

(2) The type space of player i is (R,B), in which B is the Borel sigma-algebra; the typical
type of player i is denoted by xi0.

(3) Player i’s type-dependent beliefs are represented by an n− 1-dimensional Gaussian random
vector (χ(pj0))j∈−i with expectation and variance-covariance that are functions of i’s type.
Let j, k ∈ N \ {i}, and xi0 be i’s type, then: the expectation and variance-covariance of
(χ(pj0))j∈−i are given, respectively, by E

[
χ(pj0) | χ(pi0) = xi0

]
and Cov

[
χ(pj0), χ(pk0) | χ(pi0) = xi0

]
,

which are defined in Section B.2. Let fi(·|xi0) : Rn−1 → R be the PDF of the Gaussian
random vector (χ(pj0))j∈−i with mean and variance-covariance as above. We note that fi is
well-defined because pi0 6= pj0, for all players i, j with i 6= j. Thus, player i’s type-dependent
belief is such that: for every measurable A ⊆ Rn−1 and type xi0 ∈ R, we have the following
formula for the probability of A:

P((χ(pj0))j∈−i ∈ A|xi0) =
∫
A
f(x−i0 |xi0) dx−i0 .

In particular, let’s define pi(xi0) as the probability measure on Rn−1 induced by the set-
valued mapping A 7→

∫
A f(x−i0 |xi0) dx−i0 . The function xi0 7→ pi(xi0) gives player i’s interim

beliefs.

(4) The action set of player i is Pi = [p
i
, pi], for pi < pi, and pi, pi ∈ R; we let P := ×i∈NPi

and P−i := ×j∈−iPj.

(5) The payoff of player i is ui : P ×R → R, such that:

ui(p, xi0) = E
[
πi(χ(p1), . . . χ(pn)) | χ(pi0) = xi0

]
.

Properties of the components of the game In this section, the superdifferential operator
∂ refers to differentiation with respect to i’s policy pi.

Lemma 18 (Best-response equivalence). For all i ∈ N , there exist hi, gi : P−i ×R → R such
that, letting χ = (χ(p1), . . . , χ(pn)):

E
[
πi(χ) | χ(pi0) = xi0

]
− E

[
vi(χ) | χ(pi0) = xi0

]
= hi(p−i, xi0)

and E
[
πi(χ) | χ(pi0) = xi0

]
− E

[
v(χ) | χ(pi0) = xi0

]
= gi(p−i, xi0) for all p ∈ P, xi0 ∈ R.

Proof. Follows from VNM Equivalence established in Lemma 12. �

Proof of Lemma 9

Lemma 19 (Lemma 9). The function ui(·, xi0) exhibits increasing differences in (pi, p−i) for all
xi0 ∈ R, and the function ui((·, p−i), ·) exhibits strictly increasing differences in (pi, xi0) for all
p−i ∈ P−i. Moreover, ui((·, p−i), xi0) is strictly concave.
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Proof. First, we establish strict concavity of ui((·, p−i), xi0). For a profile of policies of i’s
opponents p−i and xi0 ∈ R, we study the function

p 7→ −(xi01 + µ(p− pi01)− β)TQ(xi01 + µ(p− pi01)− β)
−

∑
(i,j)∈N2

qij Cov[χ(pi), χ(pj) | χ(pi0) = xi0]

First, we observe that p 7→ −(xi01 + µ(p − pi01) − β)TQ(xi01 + µ(p − pi01) − β) is strictly
concave on Rn because Q is positive definite. Strict concavity follows from previous results and
Best-Response Equivalence.

Let’s establish strictly increasing differences in (pi, xi0). By absolute continuity of the concave
function ui((·, p−i), xi0):

ui((ri, p−i), xi0)− ui((qi, p−i), xi0) =
∫ ri

qi

∂−ui((pi, p−i), xi0) dpi.

By the formulas from Lemma 15

∂−ui(pi, p−i, xi0) = −2µqT
i•(E[χ | χ(pi0) = xi0]− β)

−qT
i•1ω + 2qT

i•1[pi < pi0]ω − α
∑
j∈N

gij∂−pi
|pi − pj|ω.

We observe that: (i) monotonicity of F (·, pj; ti, pi0) in i’s own type (Lemma 14) and (ii) strict
diagonal dominance of Q jointly imply that ∂−ui(pi, p−i, xi0) is strictly increasing in xi0, thus the
function ui((·, p−i), ·) has strictly increasing differences in (pi, xi0) for all p−i ∈ P−i.

Similarly, we establish that the function ui(·, xi0) has increasing differences in (pi, p−i) for all
xi0 ∈ R by monotonicity of ∂−ui(pi, p−i, xi0) with respect to p−i, established in Lemma 15. �

Given the strategic complementarities established in Lemma 19, we draw on the toolset
developed by the literature on incomplete-information games with complementarities to show
that a greatest and a least equilibria exist and are in monotone strategies. Since payoffs in G(p0)
are not necessarily bounded, we leverage strict concavity of expected payoffs in own action and
compactness of action spaces to establish similar results to (Van Zandt and Vives, 2007).

Remark 5. Let’s observe that: “Assumption 1.”, “Assumption 2.”, “Assumption 3.”, “Part
(1) of Assumption 4.”, and “Part (2) of Assumption 4.” from Van Zandt and Vives (2007)
hold. Assumption 1. holds because we endow the type space of player i, R, with the usual
order. Assumption 2. holds because Pi is a compact interval of the real line, and we endow
Pi with the usual metric, so Pi is a lattice. Let’s show that Assumption 3. holds by verifying
that xi0 →

∫
A f(x−i0 |xi0) dx−i0 is measurable. Measurability holds because f is a well-defined and a

continuous real-valued function of xi0 on R. In particular, xi0 enters f only through the expected
value of (χ(pj0))j∈−i. ui(p, ·) is a real-valued continuous function on R for all p ∈ P , and ui(·, xi0)
defines a real-valued continuous function on Rn by concavity of ui(·, xi0); thus, parts (1) and (2)
of Assumption 4. hold.
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Strategies and equilibrium A strategy for player i is a measurable function σi : R → Pi.
Let Σi denote the set of strategies for player i. Let Σ := ×i∈NΣi denote the set of strategy
profiles, and let Σ−i = ×i∈−iΣj denote the set of profiles of strategies for players other than i. Σi

is endowed with the pointwise order to be a lattice, Σ−i and Σ are endowed with the product
order and ≤ denotes every partial order

We use the following shorthand notation given a profile of strategies of i’s opponents σ−i =
(. . . , σi−1, σi+1, . . . ):

χ−i = χ(σ−i) = (. . . , χ(σi−1(χ(pi−1
0 ))), χ(σi+1(χ(pi+1

0 ))), . . . )
(χi, χ−i) = (χ(pi), χ(σ−i)) = (. . . , χ(σi−1(χ(pi−1

0 ))), χ(pi), χ(σi+1(χ(pi+1
0 ))), . . . ),

and χ is the column vector of outcomes corresponding to (χi, χ−i).
The expected payoff of player i, given σ−i, is

Ui(pi, xi0;σ−i) := E{ui(χ(pi), χ(σ−i))|χ(pi0) = xi0}, xi0, pi ∈ R.

We use Ui(pi, xi0;σ−i,p0) when the particular status-quo policy profile is important; we note that
Ui(pi, xi0;σ−i,p0) depends on pj0 through F (·, pj0;xi0, pi0) if j 6= i. Let ϕi(xi0;σ−i) be the set of
policies that maximize Ui(pi, xi0;σ−i),

ϕi(xi0;σ−i) := Arg max
pi∈Pi

Ui(pi, xi0;σ−i).

Then, we have that σ ∈ Σ is a Bayesian Nash equilibrium if, and only if:

σi(xi0) ∈ ϕi(xi0;σ−i), for all xi0 ∈ R, i ∈ N.

Let βi : Σ−i → Σi denote player i’s best-response correspondence

βi(σ−i) := {σi ∈ Σi : σi(xi0) ∈ ϕi(xi0;σ−i) for all xi0 ∈ R}.

Lemma 20. The expected payoff to player i is, up to a term that is constant with respect to i’s
policy pi:

Ui(pi, xi0;σ−i) =− (E[χ | χ(pi0) = xi0]− β)TQ(E[χ | χ(pi0) = xi0]− β)
− V[χ(pi) | χ(pi0) = xi0]

− 2
∑
j∈−i

qij
∫
xj

0∈R
Cov[χ(pi), χ(sj(xj0)) | χ(pi0) = xi0] dF (xj0, pj0;xi0, pi0).

Moreover:

(1) Ui(pi, xi0;σ−i) is strictly concave in pi.

(2) Ui(pi, xi0;σ−i) exhibits strictly increasing differences in (pi, xi0) if σ−i is a profile of nondecreasing
strategies.
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Proof. First, we establish strict concavity using a result in Radner (1962) (“Lemma”, p. 863)
and Lemma 19.

Let’s establish strictly increasing differences in (pi, xi0). By absolute continuity of the concave
function Ui(·, xi0;σ−i), we have

Ui(ri, xi0;σ−i)− Ui(qi, xi0;σ−i) =
∫ ri

qi

∂−Ui(pi, xi0;σ−i) dpi.

We inspect monotonicity of ∂−Ui(pi, xi0;σ−i) with respect to ti, using the formulas in Lemma 19
and Lemma 15. Our proof is complete given: (i) monotonicity of F (·, pj0;xi0, pi0) in the sense of
FOSD with respect to xi0 (Lemma 14), and (ii) strict diagonal dominance of Q. �

Remark 6. Item (2) in Lemma 20 implies that the Single Crossing Condition for games of
incomplete information (Athey, 2001) is satisfied in G(p0). The reason is that strictly increasing
differences imply the Milgrom-Shannon single-crossing property of incremental returns.

The following result restricts the type spaces to compact sets.

Lemma 21 (Compact type spaces). For all i, there exist types xi0, xi0 ∈ R, such that:

xi0 > xi0 =⇒ ϕi(xi0, σ−i) = {pi}, for all σ−i ∈ Σ−i
and xi0 < xi0 =⇒ ϕi(xi0, σ−i) = {p

i
}, for all σ−i ∈ Σ−i.

Proof. We establish the first claim. Let σ−i be the least element in Σ−i, which is given by a profile
of constant functions. Let xi0 be such that: pi ∈ ϕi(xi0, σ−i). xi0 is well-defined by an application
of Topkis’ Theorem, because (i) ϕi(·, σ−i) is nonempty-valued and continuous correspondence (by
strict concavity of Ui(pi, xi0;σ−i) as a function of pi and Berge’s Theorem, respectively), and (ii)
Ui(pi, xi0;σ−i) exhibits strictly increasing differences in pi, xi0 on Pi ×R. Ui(pi, xi0;σ−i) exhibits
increasing differences in (pi, xi0) (Lemma 20), thus xi0 > xi0 =⇒ ϕi(xi0, σ−i) = {pi}. The first
follows because Ui(pi, xi0;σ−i) exhibits increasing differences in (pi, σ−i). The second claim is
established analogously. �

Lemma 22 (Measurability of the “GBR” mapping). The mapping xi0 → supϕi(xi0;σ−i) is
measurable.

Proof. By strict concavity of Ui(·, xi0;σ−i), its maximizer on Pi exists and is unique. The function
Ui(pi, ·;σ−i) is continuous, so by Berge’s maximum theorem the unique selection from ϕi(·;σ−i)
is a real-valued continuous function on R. The claim follows from Corollary 4.26 in Aliprantis
and Border (2006). �

Remark 7. Lemma 22 admits a different proof that is similar to the apprach taken by Van Zandt
and Vives (2007). Let’s observe that Ui(pi, ·;σ−i) is a continuous real-valued function on R by
Lemma 20. Let’s observe that Ui(·;σ−i) is continuous in i’s policy, and measurable in i’s type.
Thus, Ui(·;σ−i) is a Carathéodory function. Therefore, the results follows from the Measurable
Maximum Theorem (Aliprantis and Border (2006), Theorem 18.19).
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If σi is a nondecreasing function, by Lemma 21 its generalized inverse σ−1
i is well-defined:

σ−1
i (pi) = inf

{
xi0 ∈ R : pi ≤ σi(xi0)

}
, pi ∈ Pi.

Moreover, if σi is nondecreasing, σ−1
i is nondecreasing, left-continuous and admits a limit from

the right at each point given Lemma 21. We define σ−i to be the generalized inverse of σi extended
by continuity to be a correspondence:

σ−i : Pi ⇒ R
pi 7→ [σ−1

i (pi), lim
p′i→p

+
i

σ−1
i (p′i)] =: [σ−i1(pi), σ−i2(pi)].

Proof of Lemma 10 The result is a consequence of the following Lemma.

Lemma 23. If σ is a Bayesian Nash equilibrium, the left and right derivatives of Ui(pi, xi0;σ−i)
with respect to pi and evaluated at pi = σi(xi0) are, respectively:

∂−Ui(pi, xi0;σ−i) =



−2µqT
i•(E[χ | χ(pi0) = xi0]− β)− qT

i•1ω−∑
j gij[2F (σ−1

j1 (pi), pj0;xi0, pi0)− 1]ω if pi > pi0,

−2µqT
i•(E[χ | χ(pi0) = xi0]− β) + qT

i•1ω−∑
j∈−i gij[2F (σ−1

j1 (pi), pj0;xi0, pi0)− 1]ω if pi ≤ pi0,

∂+Ui(pi, xi0;σ−i) =



−2µqT
i•(E[χ | χ(pi0) = xi0]− β)− qT

i•1ω−∑
j gij[2F (σ−1

j2 (pi), pj0;xi0, pi0)− 1]ω if pi ≥ pi0,

−2µqT
i•(E[χ | χ(pi0) = xi0]− β) + qT

i•1ω−∑
j gij[2F (σ−1

j2 (pi), pj0;xi0, pi0)− 1]ω if pi < pi0.

Proof. The result follows from Lemma 20 and the expression for the covariance in Section B.2. �

Lemma 24. Let σ−i be a profile of nondecreasing strategies of i’s opponents. Then: ϕi(·;σ−i) is
nonempty-valued, uniquely-valued, continuous and nondecreasing in the strong set order.

Proof. ϕi(·; s−i) is nonempty-valued, uniquely-valued and continuous by Berge’s Theorem, since:
(i) Pi is nonempty and compact, and (ii) Ui(·, xi0;σ−i) is strictly concave (Lemma 20), and
Ui(pi, xi0;σ−i) is a continuous function of x0 (Lemma 20, noting that Ui(pi, x0; s−i) is a strictly
concave function of x0).

ϕi(·;σ−i) is nondecreasing by Topkis’ Theorem (Topkis (1978), Theorem 6.3), because
Ui(pi, xi0;σ−i) exhibits strictly increasing differences in (pi, xi0) (Lemma 20). �

Lemma 25. The strategy profile of nondecreasing strategies σ is a Bayesian Nash equilibrium if,
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and only if, the following conditions are satisfied for all i ∈ N , xi0 ∈ R.

k
∑
j∈N

gij[2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β − 1k)

≥ k
∑
j∈N

gij[2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) > pi0,

k
∑
j∈N

gij[2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β + 1k)

≥ k
∑
j∈N

gij[2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) < pi0,

kqT
i•1 + k

∑
j∈N

gij[2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β)

≥ −kqT
i•1 + k

∑
j∈N

gij[2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) = pi0.

Proof of Lemma 11

Proof. The result is a consequence of the above Lemma. Assuming p
i

= pi0, the strategy profile of
nondecreasing strategies σ is a Bayesian Nash equilibrium if, and only if, the following condition
is satisfied. For all i ∈ N and xi0 ∈ R such that σi(xi0) > pi0, there exists a matrix A = [aij ], such
that:

E[χ | χ(pi0) = xi0] = β + 1k +Q−1G�A1k,

and aij ∈ [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1, 2F (σ−1

j2 (σi(xi0)), pj0;xi0, pi0)− 1]. �

Existence of Bayesian Nash equilibria

Lemma 26 (Properties of “GBR” mapping). The following hold.

(1) βi(σ−i) has a greatest element, which we call βi(σ−i), for all σ−i ∈ Σ−i.

(2) For σ′−i, σ−i ∈ Σ−i such that σ′−i ≥ σ−i, we have that βi(σ′−i) ≥ βi(σ−i).

(3) If the strategies in σ−i are nondecreasing, then the unique strategy given by βi(σ−i) is
nondecreasing (in i’s type).

Proof. Ui(pi, xi0;σ−i) is continuous as a function of pi and has increasing differences in pi, σ−i
because increasing differences are preserved by integration. Thus, by “Lemma 7” in Van Zandt
and Vives (2007), ϕi(xi0;σ−i) is a nonempty complete lattice, and (2) holds.

(3) is established in Lemma 24.
(1) is a consequence of Lemma 22. �

Proof of Proposition 8

Lemma 27 (Proposition 8). There exist a greatest and a least Bayesian Nash equilibrium, and
they are in nondecreasing strategies.
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Proof. ui(·, xi0) is a continuous real-valued function on the compact set P , so ui(·, xi0) is bounded.
Given Lemma 26, the proof follows from the same argument as that of “Lemma 6” in Van Zandt
and Vives (2007). �

Proof of Proposition 9 The result is a consequence of the following result, which upper
bounds the distance between two equilibrium strategies of any player, in the sense of the sup
norm.

Lemma 28. If σi(xi0)− σi(xi0) > c, for i ∈ N, xi0 ∈ R, c > 0, then:

ω > µ2 1
α
∑

j
gij

1−α
∑

j
gij

c

Equivalently, if ω ≤ v, then: maxi∈N |σi − σi| ≤ v
α
∑

j
gij

1−α
∑

j
gij
/(µ2).

Proof. Let σ, σ ∈ Σ be, respectively, the greatest and least Bayesian Nash equilibria, and suppose
that they are distinct elements of Σ. Let i ∈ N be such that: i ∈ Arg maxi′∈N maxxi′

0 ∈R σi′(xi
′

0 )−
σi′(xi

′
0 ). First, we verify that i is well defined. By hypothesis, σi′ ≥ σi′ pointwise. Thus,

xi
′

0 7→ σi′(xi
′

0 ) − σi′(xi
′

0 ) is bounded below pointwise by a constant function that takes value 0,
and bounded above pointwise by a constant function that takes value maxj∈N pj − pj > 0. It
follows that sup{σi′(xi

′
0 ) − σi′(xi

′
0 ) : xi′0 ∈ [xi′0 , xi

′
0 ]} is well defined, and sup{σi′(xi

′
0 ) − σi′(xi

′
0 ) :

xi
′

0 ∈ [xi′0 , xi
′

0 ]} = max{σi′(xi
′

0 ) − σi′(xi
′

0 ) : xi′0 ∈ [xi′0 , xi
′

0 ]} because σi′ , σi′ are continuous by
Berge’s Theorem (Lemma 24). By Lemma 21 result, max{σi′(xi

′
0 )− σi′(xi

′
0 ) : xi′0 ∈ [xi′0 , xi

′
0 ]} ≥

max{σi′(xi
′

0 ) − σi′(xi
′

0 ) : xi′0 /∈ [xi′0 , xi
′

0 ]} = {0}. It follows that Arg maxxi′
0 ∈R σi′(xi

′
0 ) − σi′(xi

′
0 ) ⊆

[xi′0 , xi
′

0 ]. Thus, maxi′∈N maxxi′
0 ∈R σi′(xi

′
0 )− σi′(xi

′
0 ) has a solution. It follows that i is well defined.

Let yi′ ∈ Arg maxxi′
0 ∈R σi′(xi

′
0 )−σi′(xi

′
0 ), for all i′ ∈ N . The problem maxi′∈N σi′(yi′)−σi′(yi′)

has a solution, which we denote by j, and we define t := yj. By definition of yi′ , i′ ∈ N , we have
that maxi′∈N σi′(yi′) − σi′(yi′) ≥ maxi′∈N maxxi′

0 ∈R σi′(xi
′

0 ) − σi′(xi
′

0 ). Therefore, i = j and t is
the type (of player i) for which σj(xj0)− σj(xj0) is maximized across players (j) and types (xj0).
By the definition of Bayesian Nash equilibrium, we have

∂+pi
Ui(σi(t), t;σ−i) ≥ 0 and ∂−pi

Ui(σi(t), t;σ−i) ≤ 0.

Therefore:

∂+pi
Ui(σi(t), t;σ−i)− ∂−pi

Ui(σi(t), t;σ−i) ≥ 0.

Let’s verify that:

A := −2µ
(
E
[
χ(σi(t))|χ(pi0) = t

]
− E

[
χ(σi(t))|χ(pi0) = t

]
−
∑
j

gijE
[
χ(σj(χ(pj0)))|χ(pi0) = t

]
− gijE

[
χ(σj(χ(pj0)))|χ(pi0) = t

])
< −2µ2cqT

i•1.
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The claim follows from the next inequality,

A = −2µ2(σi(t)− σi(t)) + 2µ2∑
j

gijE
[
χ(σj(χ(pj0)))|χ(pi0) = t

]
− E

[
χ(σj(χ(pj0)))|χ(pi0) = t

]
≤ −2µ2(σi(t)− σi(t))qT

i•1,

which holds by definition of i and t.
We have that:

∂+pi
Ui(σi(t), t;σ−i)− ∂−pi

Ui(σi(t), t;σ−i) =
A+B − [σi(t) > pi0]2qT

i•1ω + [σi(t) > pi0]2qT
i•1ω.

With:

B := −2ω
∑
j∈N

gijF (σ−1
j2 (σi(t)), pj0; t, pi0)− gijF (σ−1

j1 (σi(t)), pj0; t, pi0) ∈ [−2ω(1− qT
i•1), 2ω(1− qT

i•1)]

Then:

A+B − [σi(t) > pi0]2qT
i•1ω + [σi(t) > pi0]2qT

i•1ω > 0
B > −A

2ω(1− qT
i•1) > 2µ2cqT

i•1

ω
α
∑
j gij

1− α∑j gij
> µ2c

�

C.2 Finite Policy Spaces
Auxiliary results The expected payoff of player i given symmetric information, σ−i, and a
profile of status quo outcomes (x1

0, . . . , x
n
0 )T = x0 ∈ Rn is

Ui(pi,x0;σ−i) := E{ui(χ(pi), χ(σ−i))|χ(p1
0) = x1

0, . . . , χ(pn0 ) = xn0},

for all pi ∈ R. We use Ui(pi,x0;σ−i,p0) when the status-quo policy profile is important.
We derive a second expression for the right and left derivatives of expected payoffs, based on

vi. For given policy p and nondecreasing strategy sj:

Ci(χ(p), χ(sj)) =


ω
∫
(−∞,s−j1(p)) sj(x

j
0)− pi0 dF i(xj0) + ω

[
1− F i(s−j1(p))

]
(p− pi0) , p > pi0,

0 , p = pi0,

ωF i(s−j2(p))(p− pi0)− ω
∫
(s−j2(p),∞) sj(x

j
0)− pi0 dF i(xj0) , p < pi0.
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Thus, we have

∂Ci(χ(pi), χ(sj)) =


ω
[
1− F i(s−j (pi))

]
, pi > pi0,[

−ωF i(s−j2(pi0)), ω − ωF i(s−j1(pi0))
]

, pi = pi0

−ωF i(s−j (pi)) , pi < pi0.

We express the left and right derivatives of the conditional expected payoff at pi 6= pi0 as follows.

∂−Ui(pi, xi0; s−i) ∝ Eiχ(pi)− δi − α
∑
j

γijEiχ(sj)−
1
−2µ

∂

∂pi
Viχ(pi)+

+2α 1
−2µ

∑
j

γij∂−Ci(χ(pi), χ(sj))

∂+Ui(pi, xi0; s−i) ∝ Eiχ(pi)− δi − α
∑
j

γijEiχ(sj)−
1
−2µ

∂

∂pi
Viχ(pi)+

+2α 1
−2µ

∑
j

γij∂+Ci(χ(pi), χ(sj)),

in which −2µ is the proportionality constant.
Lemma 29 (Continuity). Let s be a strategy profile and x0 := (x1

0, . . . , x
n
0 ) be the profile of

status-quo outcomes corresponding to status-quo policies p0 := (p1
0, . . . , p

n
0 ). Then:

(1) U i(pi, x0; s−i, p0) is a continuous function of (. . . , si−1(xi−1
0 ), pi, si+1(xi+1

0 ), . . . ).

(2) If · · · < p`−1
0 < p`0 < p`+1

0 < . . . , then: U i(pi, x0; s−i, p0) is a continuous function of p`0 on
(p`−1

0 , p`+1
0 ), ` ∈ N .

Proof. We prove (1) first. We have:

U i(pi, x0; s−i, p0) =
∫
· · ·

∫
ui(. . . , χ(si−1(xi−1

0 )), χ(pi), χ(si+1(xi+1
0 )), . . . )

dm(. . . , χ(si−1(xi−1
0 )), χ(pi), χ(si+1(xi+1

0 )), . . . ),

Where m is the distribution of a random vector that we describe in what follows. Because ui is
quadratic, the mean vector and the variance-covariance matrix of the random vector described
by G determine U i(pi, x0; s−i, p0). Thus, we prove (1) by means of the next two claims:

E[χ(q)|χ(p1
0) = x1

0, . . . , χ(pn0 ) = xn0 ] is a continuous function of q. By the properties of
Brownian bridges:

E
[
χ(q)|χ(p1

0) = x1
0, . . . , χ(pN0 ) = xn0

]
=

χ(p1) + χ(p2)−χ(p1)
p2−p1

(q − p1) p1 ≤ q ≤ p2, p1 = max{pi0 : pi0 ≤ q}, p2 = min{pi0 : pi0 ≥ q}
χ(max p0) + µ(q −max p0) q ≥ max p0

χ(min p0) + µ(q −min p0) q ≤ min p0
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Cov[χ(q), χ(q′)|χ(p1
0) = x1

0, . . . , χ(pn0 ) = xn0 ] is a continuous function of q, q′. Let q ≤ q′:

Cov
[
χ(q), χ(q′)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
=

ω (p2−q′)(q−p1)
p2−p1

p1 ≤ q ≤ p2, p1 = max{pi0 : pi0 ≤ q}, p2 = min{pi0 : pi0 ≥ q}
Cov[χ(q′), χ(q) | χ(max p0)] q′ ≥ q ≥ max p0

Cov[χ(q′), χ(q) | χ(min p0)] q ≤ q′ ≤ min p0

0 else.

Let’s establish (2). Let p1
0 < p2

0 < . . . . The expressions above show that mean and covariance
terms of the pair of random variables χ(q), χ(q′) | χ(p1

0), . . . , χ(pn0 ) are locally continuous in
p1

0, . . . , p
n
0 . �

Definitions and assumptions We consider the same interim Bayesian game as the heterogeneous
status quo game, except that the policy space of every agent is a finite nonempty set and that
n = 2. In particular, we consider the two-player heterogeneous status quo game F , for fixed
status quo policy profile p0 ∈ R2 and the finite policy spaces defined in what follows, under the
maintained assumption that p1

0 6= p2
0.

Let Ai = {ai,1, . . . , ai,Mi
}, for given Mi ∈ N and every i ∈ N . We define the following payoff

differences, towards studying strategic complementarities

dui(ai, a′i, a−i, xi0) =
∫ ai

a′i

ui(pi, a−i, xi0) dpi

δi(ai, a′i, a−i, a′−i, xi0) = dui(ai, a′i, a−i, xi0)− dui(ai, a′i, a′−i, xi0).

Lemma 30 (Dominance Region). There exists x, x ∈ R such that: x < x and, for all i ∈
N, a−i ∈ A−i it holds that

dui(ai,Mi
, a′i, a−i, x

i
0) > 0 if ai 6= ai,Mi

and xi0 > x,

and dui(ai,1, a′i, a−i, xi0) > 0 if ai 6= ai,1 and xi0 < x.

Proof. The result follows from Lemma 21. In particular, in the notation of the aforementioned
result, we define

x := max{x1, x2} and x := max{x1, x2}.

�

Lemma 31 (Strategic Complementarities). The function ui(·, xi0) exhibits increasing differences
in (ai, a−i), for all i ∈ N and xi0 ∈ R.

Proof. The result follows from Lemma 19. �

Lemma 32 (Type Monotonicity). The function ui(·, a−i, xi0) exhibits strictly increasing differences
in (ai, xi0), for all i ∈ N and a−i ∈ A−i.
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Proof. The result follows from Lemma 19. �

Lemma 33 (Constant Type Monotonicity). For all i ∈ N, a′′i , a′i ∈ Ai with a′′i > a′i, and all
a′′−i, a

′
−i ∈ A−i with a′′−i > a′−i, the function δi(a′′i , a′i, a′′−i, a′−i, ·) is constant on R.

Proof. In the proof of Lemma 19, we show an expression for dui(ai, a′i, a−i, xi0), which we use to
write:

δi(a′′i , a′i, a′′−i, a′−i, xi0) =
∫ a′′i

a′i

−2µ(−gi−i)µ(a′′−i − a′−i)− gi−i(∂−|pi − a′′−i| − ∂−|pi − a′−i|)ω dpi.

The result follows. �

Lemma 34 (Existence of Cutoffs). For all i ∈ N, a′′i , a′i ∈ Ai and all a−i ∈ A−i, there exists
x̃ ∈ R such that

dui(a′′i , a′i, a−i, x̃) = 0.

Proof. In the proof of Lemma 19, we show that ui is strictly concave in i’s policy. The result
follows. �

Lemma 35 (Payoff Continuity). For all i ∈ N, ai ∈ Ai and a−i ∈ A−i, the function ui(ai, a−i, ·)
is continuous on R.

Proof. ui(ai, a−i, ·) is a strictly concave function (of the column vector (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) =
xi0])T, for a given j ∈ N ,) by positive definiteness of Q. The result follows since ui(ai, a−i, xi0)
is a function of xi0 only through (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) = xi0])T, and the function
xi0 7→ (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) = xi0])T is affine. �

In F , a strategy for player i is a function αi : R → Ai. We study Bayesian Nash equilibria of
F defined at the interim stage.
Existence of Bayesian Nash equilibria The proof is an adaptation of the one in Athey
(2001). For simplicity of exposition, we prove the theorem in the where A := A1 = A2 and
M1 − 1 =: M , so that we may relabel policies as in A = {a0, . . . , aM}. We say that strategy α′i
improves upon strategy αi given α−i if: Ui(αi(xi0), xi0;α−i) ≤ Ui(α′i(xi0), xi0;α−i) for all xi0.

We define the set of i’s cutoffs as

Σ̂i := {(x1, . . . , xM) ∈ (R ∪ {−∞,∞})M : x1 ≤ x2 ≤ · · · ≤ xM},

Σ̂ = ×i∈N Σ̂i, and Σ̂ = ×j∈−iΣ̂j, We say that a strategy αi has finite cutoffs if a0, aM ∈ αi(R).

Lemma 36 (Finite Cutoffs). Let’s fix i ∈ N . If αi does not have finite cutoffs, there exists
strategy α′i that has finite cutoffs and improves upon αi given some nondecreasing strategy profile
of i’s opponents.
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Proof. Let’s suppose a0 ∈ αi(R) and aM /∈ αi(R). Let’s define b = inf{xi0 ∈ R : αi(xi0) =
maxαi(R)}. There exists k > 0 such that ∂−Ui(AM , b+ k;α−i) > 0, because ∂−U ′i(AM , ·;α−i) is
increasing for nondecreasing α−i Let’s define the strategy α′i for player i as follows:

α′i : y 7→

αi(y) , y ≤ b+ k

aM , y > b+ k

The other cases can be dealt with similarly. �

Definition 2. (i) Given a nondecreasing strategy αi, x ∈ Σ̂i represents αi if the following holds
for all m ∈ {0, . . . ,M}.

xm =∞ if am > maxαi(R), xm = −∞ if am < minαi(R), and:

xm = inf{xi0 ∈ R : αi(xi0) ≥ am}, otherwise.

(ii) Given a vector x ∈ Σ̂i, strategy αi is consistent with x if:

αi(xi0) =



a0 , xi0 ≤ x1

a1 , x1 < xi0 ≤ x2
...
aM , xM < xi0.

For fixed cutoff profile of i’s opponents, X−i = (xj)j∈−i ∈ Σ̂−i, we denote i’s expected payoff
from policy p as her expected payoff from (χ(p), χ(α−i(x−i0 ))), in which αj is consistent with xj,
j ∈ −i; thus, we have

Ûi(p, xi0;X−i) := Ui(p, xi0;α−i).

We define the best response to X−i of i as:

âBRi (xi0, X−i) = Arg max
a∈Ai

Ûi(a, xi0;X−i)

Lemma 37 (Bounds of best-response cutoffs). There exists t, t such that the following holds.
For every i ∈ N,X−i ∈ Σ̂−i, nondecreasing selection ζ from âBRi (xi0, X−i) and cutoffs xi ∈ Σ̂i

representing ζ, we have:

−∞ < t ≤ xi1 ≤ · · · ≤ xiM ≤ t <∞.

Proof. The result follows from Lemma 21. �

Proposition 10 (Existence in Discrete Game). In the game F , there exists an equilibrium in
nondecreasing strategies.
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Proof. We apply Kakutani’s theorem to the following correspondence. Let’s define the set of
cutoff vectors that represent best response strategies to the profile X:

Γi(X−i) = {y ∈ Σ̂i : there exists a strategy for i consistent with y that
is a selection from aBRi (·, X−i)}.

We claim that there exists a fixed point of the correspondence (Γ1, . . . ,ΓI) : Σ→ Σ, where:

Σ := ×i∈NΣi and Σi := {x ∈ [t, t]M : x1 ≤ x2 ≤ · · · ≤ xM}.

Σi is compact, convex subset of RnM . Γ is nonempty-valued because action spaces are finite and
the Single Crossing Condition for games of incomplete information holds. Γ is convex-valued
due to “Lemma 2” in Athey (2001), and the Single Crossing Condition for games of incomplete
information. Γ has closed graph, as established in the proof of “Lemma 3” in Athey (2001).
Thus, by Kakutani’s theorem, there exists a fixed point of Γ.

Next, we claim that a fixed point of Γ is an equilibrium of F . It follows from Lemma 37,
because if a strategy is a best-response against X−i, than it admits a representation with finite
uniformly bounded cutoffs. �

Remark 8. We note that the proof of existence of Bayesian Nash equilibria in F does not rely
on the assumption that n = 2. Thus, it also establishes existence with finite policy spaces and n
players.

Remark 9 (Existence in G(p0)). Following the approach in Athey (2001), there is a second
existence proof for nondecreasing strategy equilibria in G(p0), which uses a purification argument
given existence of an equilibrium in nondecreasing strategies in F .

Lemma 38. In G(p0), there exists an equilibrium in which every player’s strategy is nondecreasing.

Proof. For each player i, let’s consider a sequence of action spaces P •i , in which

P k
i =

{
p
i
+ m

10k (pi − pi) : m = 0, . . . , 10k
}

, k ∈ N.

For every k, the game where finite action spaces P k
1 , P

k
2 , . . . replace A1, A2, . . . has an

equilibrium, by Lemma 10. Let’s fix a sequence of equilibria in nondecreasing strategies,
s•. Because action spaces P k

1 , P
k
2 , . . . are bounded by min p

i
and max pi, s• is a sequence of

uniformly bounded nondecreasing functions. By Helly’s selection theorem, s• admits a pointwise
convergent subsequence, so we define s? := lim s•. Because sk is an equilibrium, it holds that
Ui(ski (xi0), xi0; sk−i) ≥ Ui(p, xi0; sk−i), for all k and p ∈ P k

i . Ui(p,x0; sk−i) is a continuous function
of (. . . , ski−1(xi−1

0 ), ski+1(xi+1
0 ), . . . ), by lemma 29. Thus, Ui(p, xi0; sk−i), which is the expectation

of Ui(p,x0; sk−i), converges as k →∞. Therefore: it holds that Ui(s?i (ti), xi0; s?−i) ≥ Ui(p, xi0; s?−i),
for all p ∈ Pi. s? is an equilibrium of the game G(p1

0, . . . , p
N
0 ). �

Uniqueness of Bayesian Nash equilibria with two players First, we establish two
properties of beliefs in F , which we leverage to establish uniqueness of non-decreasing strategy
equilibrium.
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Let Ci denote the space of nondecreasing strategies for player i ∈ N , in which a nondecreasing
strategy is identified by its finite sequence of “real cutoffs” (Mathevet, 2010). For k > 1, let’s
compute the probability that i attaches to her opponent playing strictly less than g = a−i,k ∈ A−i,
given that i’s type is xi0 and −i’s strategy is α−i:

Φ
α−−i1(g)− xi0 − µ(p−i0 − pi0)√

ω|pi0 − p−i0 |

,
in which α−−i1(g) is the real cutoff between a−i,k−1 and a−i,k implied by α−i. For k = 1, that
probability is 0.

Towards a definition of the above probability as a function of real cutoffs, we make the
following definitions. Given a policy g ∈ A−i, we let k−i(g) be such that: g = a−i,k−i(g). A real
cutoff between a−i,k and a−i,k+1 is denoted by cr−i,k, for k ∈ {1, . . . ,Mi − 1} (the interpretation
for cr−i,k is that types below cr−i,k play a−i,k and types above cr−i,k play a−i,k+1).

Given a nondecreasing strategy c−i ∈ C−i, g ∈ A−i, xi0 ∈ R, we define:

Λi(g|c−i, xi0) =


Φ
(
cr
−i,k−i(g)−1−x

i
0−µ(p−i

0 −p
i
0)√

ω|pi
0−p

−i
0 |

)
if k−i(g) > 1,

0 if k−i(g) = 1.
.

Lemma 39 (FOSD and Translation Invariance). For all i ∈ N , and yi0, xi0 ∈ R with yi0 > xi0,
we have:

Φ
s− yi0 − µ(p−i0 − pi0)√

ω|pi0 − p−i0 |

 < Φ
s− xi0 − µ(p−i0 − pi0)√

ω|pi0 − p−i0 |

.
Moreover, let c−i be a column vector real cutoffs with M−i columns corresponding to an element
of C−i, we have that

Λi(g|c−i + ∆1, xi0 + ∆) = Λi(g|c−i, xi0),

for all i ∈ N, g ∈ A−i and ∆ ∈ [0, x− x].

Proof. The first part follows from Lemma 14. The second part follows from the definition of
Λi. �

Proposition 11. In the game F , there exists a unique equilibrium in nondecreasing strategies.

Proof. Given that we established existence of an equilibrium in nondecreasing strategies, it
suffices to establish that there exists at most one equilibrium in nondecreasing strategies. The
proof uses the same argument as “Proposition 2” and “Theorem 1” in Mathevet (2010). In
particular, Lemmata 30 through 35 imply “Assumptions 1, 2, 3, 4, 5, 6” in Mathevet (2010), and
beliefs in F satisfy FOSD and Translation Invariance. �

Remark 10. This remark explains why the results for G(p0), either for existence and for the
characterization of extremal equilibria, are not used in F . This remark is informed by the
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approach taken in Mathevet (2010) to establish uniqueness. For notational convenience, our next
definition is valid under the assumption that Ai ⊆ Pi for all i ∈ N ,

ϕFi (xi0, α−i) = Arg max
pi∈Ai

Ui(pi, xi0;α−i).

We note that ϕFi differs from ϕi because the respective optimization problems have different feasible
sets: Ai and Pi, respectively. If the mapping xi0 → supϕFi (xi0, α−i) is measurable, then there
exists a unique equilibrium in F .27 However, ϕFi (xi0, α−i) is not necessarily single-valued, so the
Caratheodory-function argument used in G(p0) does not hold in F .

D Proofs for Section 2
Proof of Lemma 1.

Proof. By strict concavity of expected payoff in own policy (Lemma 19), it is enough to verify
that, up to a positive proportionality constant of −2µ, the right derivative of expected payoff in
own policy is:

∂pi+Eπi(χ(p)) ∝ Eχ(pi)− βi − α
∑
j

γij(Eχ(pj)− βj + ∂pi+|pi − pj|k)

−

1− α
∑
j

γij

 1
−2µ∂pi+Vχ(pi),

which follows from the independent Proposition 12. The result follows because p−i 7→ ∂pi+Eπi(χ(p))
is increasing (this step is shown explicitely in the proof of 19, and it is omitted here for the sake
of brevity.) �

Proof of Proposition 1.

Proof. In G0, strategy spaces are compact intervals and player i’s payoff function is continuous
in pi for all p−i (Lemma 19) and supermodular in (pi, p−i) (Lemma 9). The result follows from
Tarski’s fixed point theorem. �

Proof of Proposition 2.

Proof. Without loss of generality, we set p0 = 0 to ease on notation. By right and left
differentiation of the strictly concave expected payoff of player i in own payoff (Lemma 19), at

27Here is the reason. Let’s order individual strategies and strategy profiles in F as in the heterogeneous status
quo game. To establish uniqueness, by Proposition 11, it suffices to establish that there exists a largest and a
smallest equilibrium, and that they are in nondecreasing strategies. Once we establish that the “GBR” mapping
is measurable — ie, the equivalent in F of Lemma 22 in G(p0) —, the same argument that we adopt to establish
Proposition 27 in G(p0) is valid in F .
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policy profile p, and by the best-response equivalence established in Lemma 12, the best response
constraints for i are equivalent to the following pair of inequalities:

Eχ(pi)− βi − α
∑
j

γij(Eχ(pj)− βj) ≤ ([pi ≥ 0]− [pi < 0])k

+α
∑
j

γij([pi ≥ pi]− [pi < pj])k

and ([pi < 0]− [pi ≤ 0])k + α
∑
j

γij([pi < pi]− [pi ≥ pj])k ≥ Eχ(pi)− βi

−α
∑
j

γij(Eχ(pj)− βj),

which are found by left and right differentiation of the strictly concave potential, separately in
each individual policy (i.e. for all pi’s). The result follows from rearranging the above inequalities
in matrix notation. �

Proof of Lemma 2.

Proof. The result follows directly from the results in Belhaj et al. (2014), and also the analysis
in Ballester et al. (2006). �

Proof of Corollary 1.

Proof. The result follows from the analysis of Callander (2011a), or the same arguments leading
to Lemma 1 and Proposition 2. �

E Proofs for Section 3

Proofs of Section 3
Proof of Lemma 2.

Proof. The present proof uses the notation described in Section A. By the equilibrium decomposition:

QEχ(p) = b+Q1k + (G�A)1k

Thus:

qT
i•Eχ(p) = bi + qT

i•1k +
∑
j

gijaijk

So, by symmetry of G

(Eχ(pi)− Eχ(pj))(1 + gij) = bi − bj + qT
i•1k − qT

j•1k+
+

∑
`/∈{i,j}

(gi` − gj`)Eχ` +
∑

`/∈{i,j}
(gi`ai` − gj`aj`)k + gij(aij − aji)k
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Which simplifies to:

(Eχ(pi)− Eχ(pj))(1 + gij) = bi − bj + αγ
∑

`/∈{i,j}
(ai` − aj`)k − 2gk

From the equilibrium decomposition, it holds that: (i) ai` − aj` ∈ [−2, 0] if pi < pj, and (ii)
ai` − aj` = 0 only if: p` ∈ {pi, pj} or p` ∈ Pi \ [pi, pj]. The result follows. �

Proof of Lemma 3

Proof. We use the notation developed in Section A. We have that, for all i,m ∈ N

Eχ(pi) = βi + k + (I −G)−1
ii

∑
`∈N

gi`ai`k+

+
∑

j∈N\{i,m}
(I −G)−1

ij

∑
`∈N

gj`aj`k + (I −G)−1
im

∑
`∈N

gm`am`k.

Thus:

Eχ(pi)− Eχ(pm) = βi − βm +
[
(I −G)−1

ii − (I −G)−1
mi

]∑
`∈N

gi`ai` −
∑
`∈N

gm`am`

k
Letting g := αγ, by computation of (I−G)−1, we have that the diagonal element is 1−g(n−1)+g

(1−g(n−1))(1+g)
and the off-diagonal element is: g

(1−g(n−1))(1+g) , so that:

(I −G)−1
ii − (I −G)−1

im = 1
1 + g

.

Thus, by the preceding equality we have:

Eχ(pi)− Eχ(pm) = βi − βm + g

1 + g

∑
`∈N

ai` −
∑
`∈N

am`

k
= βi − βm −

g

1 + g
2k + g

1 + g

 ∑
`∈N\{i,m}

ai` − am`

k.
The result follows from the equilibrium decomposition in Proposition 2 and the hypotheses on
p. �

Proof of Lemma 5.

Proof. The result follows from Lemma 12. �

Towards the proof of Lemma 3, we establish an auxiliary result. We say that Γ is complete if:
γij = 1 for all j ∈ N \ {i} and γii = 0 for all i ∈ N . We say that the equilibrium p is ordered if:
p1 < p2 < · · · < pn, and a the equilibrium p is interior if: pi ∈ (p0, p), i ∈ N .
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Lemma 40. Let Γ be complete. Then, Assumption 1 is satisfied if, and only if: α < 1/(n− 1).
Moreover, if p ∈ (p0, p)n is an ordered equilibrium and i ∈ {1, . . . , n− 1}, then

Eχ(pi)− Eχ(pi+`) = βi − βi+` − 2` α

1 + α
k, ` ∈ {1, . . . , n− i}.

Furthermore, if δi − δi+1 > 2 α
1−αk, then: every interior equilibrium is ordered, and there exists at

most one ordered interior equilibrium.

Proof. Assumption 1 is satisfied if, and only if: α < 1/(n − 1). The result follows from
the largest eigenvalue of Γ being λ(Γ) = n− 1.

“Moreover” part. By the Decomposition of equilibrium expected outcomes, pi < pj implies

Eχ(pi)− Eχ(pj) = βi − βj + α

1 + α

∑
`∈N\{i,j}

(ai` − aj`)k − 2 α

1 + α
k,

in which ai`, aj` are elements of the matrix A in the decomposition, and we used the properties
of the complete Γ. The formula for Eχ(pi)− Eχ(pi+`) in the Lemma follows from the properties
of A stated in the decomposition given that p is ordered.

It remains to verify that Eχ(pi) ≥ βi. We set α̂ = α(n− 1) for α̂ ∈ (0, 1) — if α̂ = 0, then
Eχ(pi) = βi + k ≥ βi. After computation of the Leontieff inverse B, it is established that:

1 + α̂
∑
j∈N

Bijaij = 1− (n− 1)(1− α̂) + α̂

(n− 1 + α̂)(1− α̂) α̂ + α̂

(n− 1 + α̂)(1− α̂) α̂(n− 1),

using the properties of the matrix A for an interior ordered equilibrium p (and the entries of B,
described in the proof of Proposition 7).

We verify that

1 + α̂
∑
j∈N

Bijaij ≤ 0 ⇐⇒ (n− 1)(1− α) + α + 2α2(n− 2) ≤ 0

Since the left-hand side of the above inequality is always positive, the result follows.
“Furthermore” part. This result is established in the proof of Proposition 7. �

Proof of Lemma 3.

Proof. The result is an implication of Lemma 40 �

Towards the proof of Lemma 4, we establish an auxiliary result. We say that Γ is a line if: (i)
γii+1 = 1 for all i ∈ {1, . . . , n− 1}, (ii) γii−1 = 1 for all i ∈ {2, . . . , n}, and (iii) γij = 0 otherwise.
We say that the equilibrium p is ordered if: p1 < p2 < · · · < pn.

Lemma 41. Let Γ be a line and 0 < α < 1/2. Then, Assumption 1 is satisfied. Moreover, if
p ∈ (p0, p)n is an ordered equilibrium and i ∈ {1, . . . , n− 1}, then

Eχ(pi)− Eχ(pi+`) = βi − βi+` − a(i, `, n, α)k, ` ∈ {1, . . . , n− i},
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for some a(i, `, n, α) > 0.
Furthermore, Eχ(pi) ≥ βi.

Proof. (1) Characterization of the inverse of I − αΓ using Toeplitz matrices.
We have that I −αΓ =: S = [Sij : i, j ∈ N ] in which (i) Sii+1 = −α for all i ∈ {1, . . . , n− 1},

(ii) Sii−1 = −α for all i ∈ {2, . . . , n}, (iii) Sij = 1 and (iv) Sij = 0 otherwise. This matrix S
Toeplitz becase it is constant on each diagonal. We study the following transformation T of S.

T = 1
α
S,

so that T in which (i) T ii+1 = −1 for all i ∈ {1, . . . , n− 1}, (ii) T ii−1 = −1 for all i ∈ {2, . . . , n},
(iii) T ij = a := 1/α and (iv) T ij = 0 otherwise. T is Toepliz, and the entries of its inverse can be
characterized starting from the two solutions to r2 − ar + 1 = 0. If 0 < α < 1/2, there exists two
distinct roots, defined as:

r− :=
1−

√
(1 + 2α)(1− 2α)

2α

r+ :=
1 +

√
(1 + 2α)(1− 2α)

2α .

It is straightforward to establish that 0 < r− < 1 < 1/α < r+ < 1/α+ 1. By the characterization
of inverse of Toeplitz matrices in Theorem 2.8 in Meurant (1992), we have: T−1 = [T−1

ij : i, j ∈ N ]
and

T−1
ij = (ri+ − ri−)(rn−j+1

+ − rn−j+1
− )

(r+ − r−)(rn+1
+ − rn+1

− )
, j ≥ i.

(2) Characterization of vector αΓ�A1k, given an ordered equilibrium. We have that:

αΓ�A1k = α



−1
0
...
0
1

k.

(3) Characterization of vector e := (I−αΓ)−1αΓ�A1k, given an ordered equilibrium.
By using the definition of T−1, and e = [ei : i ∈ N ] we have that:

ei = −k
(
−

ri+ − ri−
rn+1

+ − rn+1
−

+ rn−i+1
+ − rn−i+1

−

rn+1
+ − rn+1

−

)

= −r
n−i+1
+ − ri+ − rn−i+1

− + ri−
rn+1

+ − rn+1
−

k.
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It follows that

ei − ei+` ∝ −
(
rn−i+1

+ − rn−i−`+1
+ − ri+ + ri+`+ − rn−i+1

− + rn−i−`+1
− + ri− − ri+`−

)
,

which is a positive number. We take:

a(i, `, n, α) = rn−i+1
+ − rn−i−`+1

+ − ri+ + ri+`+ − rn−i+1
− + rn−i−`+1

− + ri− − ri+`−
rn+1

+ − rn+1
−

.

(4) Largest Eigenvalue of Γ. The adjacency matrix Γ is Toeplitz. By known results (Theorem
2.2 in Kulkarni et al., 1999), the largest eigenvalue is

λ(Γ) = −2 cos(πn/(n+ 1)) ∈ [0, 2).

“Furthermore” Part. We verify that ei ≥ −k. In particular,

−ei/k > 1 ⇐⇒ rn−i+1
+ − ri+ − rn−i+1

− + ri− > rn+1
+ − rn+1

− ,

⇐⇒ −ri+ + ri− > rn+1
+ (1− r−i+ )− rn+1

− (1− r−i− ).

The right-hand side of the above inequality is positive and the left-hand side is negative, by
definition of r+, r− and α ∈ (0, 1/2), i ∈ N . Thus, it holds that −ei/k ≤ 1. �

Proof of Lemma 3.

Proof. The result is an implication of Lemma 41. �

Proofs for Remark 1 We say that players have the same unweighted centrality if u :=
(I − αΓ)−11 is such that ui = uj for all players i, j ∈ N . An equilibrium p ∈ P n is symmetric if
pi = pj for all players i, j ∈ N .

Lemma 42. Let players have the same centrality, same unweighted centrality, and p = p0.
If χ(p0) and p are sufficiently large, there exist a greatest and a least symmetric equilibrium,
respectively q and s. Moreover:

Eχ(q) = β + 1k and Eχ(s) = β + 21k − uk.

Proof. Application of the Decomposition of Equilibrium Expected Outcomes
Let ([pi < pj], i, j ∈ N) and ([pi ≤ pj], i, j ∈ N) be two n-by-n matrices, in which [Y ] is the
Iverson bracket of the statement Y , so [Y ] = 1 if the statement Y is true, and [Y ] = 0 otherwise.
We define Γ+(p) = Γ � ([pi < pj], i, j ∈ N) and Γ−(p) = Γ � ([pi ≤ pj], i, j ∈ N). By the
decomposition in Proposition 2, p ∈ (p0, p)n is an interior equilibrium if, and only if:

k(I − 2αΓ−(p))1 ≤ (I − αΓ)(Eχ(p)− β) ≤ k(I − 2αΓ+(p))1.
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Implications of symmetric equilibria
If p ∈ (p0, p)n, then:

β + (I − αΓ)−1(I − 2αΓ−(p))1k = β + 21k − uk,
β + (I − αΓ)−1(I − 2αΓ+(p))1k = β + 1k.

(The first equality follows from the definition of B.)
The result follows. �

Corollary 3. Let δi = 0 for all i ∈ N and players have the same unweighted centrality. Then,
p ∈ (p0, p)n is an equilibrium if, and only if:

Eχ(p) ∈ [(21− u)k,uk].

Moreover: uk is increasing in α and k, (21− u)k is decreasing in α, and (2− ui)k is increasing
in k iff ui < 2.

Proof of Lemma 1

Proof. The first part of the proof is a consequence of an observation made in Vives (1999),
Chapter 2, Footnote 23, and the potential structure of the game (Proposition 18.) The second
part follows from Corollary 3, after noting that players have the same unweighted centralities
under a complete network. �

F Proofs for Section 4

Proofs for Section 4.1
Towards the proof of Proposition 3, introduce a definitions and several lemmata.

Definition 3. The game in strategic form 〈I, {Si, ui}i∈I〉 is a potential game if there exists a
function U : ×i Si → R such that, for all i ∈ I, s−i ∈ ×j 6=iSj and si, s′i ∈ Si:

ui((si, s−i)) > ui((s′i, s−i)) iff U((si, s−i)) > U((s′i, s−i));

the function U is called a potential for the game.

Towards the study of a selection rule for equilibria of G(x0), we introduce a function that
is related to the potential of the game without complexity. The no-complexity potential is the
function v : Rn → R given by

v(x) = 2(1− α)δTx− xT(I − αΓ)x.

And the expected no-complexity potential V : P n → R is given by

V (p) = Ev(χ(p)), for all p ∈ P n.
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The expected no-complexity potential, or potential, provides a potential for the game G(x0), as
established by the next results. The function v is the potential of the game S defined in Section
2.3; this result is a corollary to Proposition 12 and is known (Jackson and Zenou, 2015).

Lemma 43. The game G(x0) is a potential game. Moreover, for every player i ∈ N there exists
a function gi : P n−1 ×R → R such that:

Eπi(χ(p)) = Ev(χ(p)) + gi(p−i, xi0) for all p ∈ P n and x0 ∈ R,

and a potential for G(x0) is the expected no-complexity potential V : p 7→ Ev(χ(p)) given the
status-quo outcome x0.

Proof of Lemma 43.

Proof. We first establish von-Neumann-Morgenstern equivalence (Morris and Ui, 2004) between
the two strategic-form games S and 〈N, {P, v}i∈N〉. Thus, we show that: for all i ∈ N , there
exists a function hi : Rn−1 → R such that

πi(x)− v(x) = hi(x−i) for all x ∈ Rn.

The claim is a consequence of Γ being a symmetric matrix. In particular, we note that∑
(i,j)∈N2 γijxixj − 2∑j∈N γ

ijxixj is constant with respect to xi, and:

v(x)− vi(x) =
∑
j∈−i

(
2(1− α)δjxj − x2

j

)
+ α

∑
(i,j)∈N2

γijxixj − 2α
∑
j∈N

γijxixj.

The second part of the Lemma follows, by observing that vi(x) − πi(x) is constant in x−i, as
shown in Section A, and taking expectations given the status-quo outcome.

It remains to establish that von-Neumann-Morgenstern equivalence betweenG0 and 〈N, {P,Ev(χ(p))}i∈N〉
implies that G0 is a potential game. We prove a stronger statement: V is a w-potential for G(x0)
with wi = 1 for all i ∈ N , that is, G(x0) is an weighted and exact potential game, and V is a
weighted and exact potential. The intuition for the observation is the same as for Lemma 1 in
Morris and Ui (2004), we include a proof because Morris and Ui assume finite strategy spaces.

Let Πi(qi, p−i) := Eπi(χ(p1), . . . , χ(qi), χ(pi+1), . . . ). By the definitions of Monderer and
Shapley (1996, p. 127),V is an exact potential forG(x0) if Πi(pi, ·)−Πi(p′i, ·) = V ((pi, ·))−V ((p′i, ·))
for all pi, p′i ∈ P . By our preceding results:

Πi(pi, p−i)− V ((pi, p−i)) = gi(p−i, x0) and Πi(p′i, p−i)− V ((p′i, p−i)) = gi(p−i, x0).

Thus, we have

Πi(pi, p−i)− V ((pi, p−i)) = Πi(p′i, p−i)− V ((p′i, p−i)),

which we rearrange to write:

Πi(pi, p−i)− Πi(p′i, p−i) = V ((pi, p−i))− V ((p′i, p−i)).
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Lemma 44. If U is a potential for the game G(x0), there exists a constant c ∈ R such that

U(p) = V (p) + c, for all p ∈ P n.

Moreover, if p is a potential maximizer, then p is an equilibrium of G(x0).

Proof of Lemma 44.

Proof. Let p ∈ P n be a potential maximizer and i ∈ N, qi ∈ P such that

Eπi(χ(p)) < Eπi(. . . , χ(pi−1), χ(qi), . . . ).

By Lemma 43, we have

Ev(χ(p)) < Ev(. . . , χ(pi−1), χ(qi), . . . ),

Which contradicts the definition of p.
The second part of the Lemma follows from Lemma 2.7 in Monderer and Shapley (1996) if

G(x0) is an exact potential game, using a definition in Monderer and Shapley (1996, p. 127). In
the proof of Lemma 43, we establish that G(x0) is an exact potential game when we show that
V is an exact potential for G(x0). �

Proposition 12. The game G(x0) is a potential game and V : P n → R is a potential for G(x0).
Moreover,

(1) If U : P n → R is a potential for G(x0), there exists a constant c ∈ R such that

U(p) = V (p) + c, for all p ∈ P n.

(2) If the policy profile p ∈ P n maximizes V , then p is an equilibrium of G(x0).

Proof of Proposition 12

Proof. The Proposition follows directly from Lemmata 43 and 44. �

We establish an auxiliary Lemma towards the proof of Proposition 4. Towards a characterization
of the potential maximizer, we note that the no-complexity potential can be expressed as
v(x) = −(x−β)T(I−αΓ)(x−β)+βT(I−αΓ)β, which directly implies the following expression
for V .

Lemma 45. For all policy profiles p ∈ P n, we have that

V (p) = −(Eχ(p)− β)T(I − αΓ)(Eχ(p)− β)−
∑
i∈N

Vχ(pi) + α
∑
i,j∈N

γijC[χ(pi), χ(pj)],

up to a term that is constant in p.
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Proof of Lemma 45.

Proof. We observe that the potential function v is a quadratic form, so V (p) = −(Eχ(p) −
β)T(I −αΓ)(Eχ(p)−β)− tr((I −αΓ)Ω) +βT(I −αΓ)β, in which Ω is the variance-covariance
matrix of χ(p) given χ(p0) = x0, which is well-defined by joint Gaussianity of outcomes and
ω > 0. �

Proposition 13 (Potential maximizer). Let P = [p0, p]. There exists a unique potential
maximizer. Moreover, the policy profile p ∈ (p0, p)n is a potential maximizer if, and only
if:

Eχ(p) = β + 1k + α(I − αΓ)−1(Γ�A)1k,

for a skew-symmetric matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1] and aij = 1, if pi > pj.

Proof of Proposition 13.

Proof. The first part of the result is a consequence of standard tools in convex analysis. First,
we claim that there exists at most one potential maximizer. This follows from strict concavity of
V , proved in Section B.3. For existence given strict convexity of −V see, e.g., Proposition 9.3.2,
part (iv), in Briceño-Arias and Combettes (2013), stated in a game-theoretic environment.

The characterization of the potential maximizer is established in Lemma 17. �

Proof of Proposition 3.

Proof. Part (1) follows from Proposition 12. Part (2) follows from Proposition 13. �

Proof of Proposition 4.

Proof. The result follows from Proposition 13. �

Proof of Proposition 5.

Proof. We use the notation developed in Section A, in which we define vi as the “effort-game
ex-post payoff”, defined over outcome profiles. It holds that:

v(x) =
∑
i

vi(x)− αxTΓx.

Thus, we have that:

W (p) = E
[
v(χ(p)) + αχ(p)TΓχ(p)|χ(p0) = x0

]
.

Strict concavity of W on [p0, p]n follows from the same argument as Lemma 15. Thus, the
superdifferential of W is well-defined. By standard subgradient calculus (Rockafellar, 1970), we
write the following expression for ∂W , using + for (Minkowski) set addition,

∂W (p) = ∂V (p) + ∂E
[
αχ(p)TΓχ(p)|χ(p0) = x0

]
.
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Using the decomposition of expectation of quadratic forms, we have:

∂W (p) = ∂V (p) + 2αΓ∂E[χ(p)] + α∂
∑

(i,j)∈N2

γij C(χ(pi), χ(pj)),

for which we also apply symmetry of Γ. The result follows from the characterization of ∂V (p) in
Lemma 17, in which we also characterize ∂∑(i,j)∈N2 γij C(χ(pi), χ(pj)). �

Proofs for Section 4.2 and Section 4.3
In this section, we assume that P = [p0, p].

Lemma 46. Let |a1−c1−a2 +c2| ≤ −gk. For sufficiently large χ(p0), total profits are maximized
by

Eχ(pi) = min
{
b
a− c1 + a− c2

4(1 + gb) + k, χ(p0)
}
.

The maximization of total profits is implemented in equilibrium if, and only if: a− c1 + a− c2 ≤
1+bg
b

2k.

Proof. By Lemma 5, we find the set of equilibria using Proposition 2. By Proposition 5 and
Lemma 5, we find the maximizer of total profits by using 47 and 2g in place of g. �

Dyad We assume that N = 2, and we use α̂ := αγ12. We use χi := χ(pi), χ for the
column vector of outomes (χ(p1), χ(p2))′, and ∂pi

for the subdifferential with respect to pi. The
expectation operators are conditional on χ(p0) = x0. Let y+ := max{β1, β2}+k

(
1− α̂

1+α̂

)
, y− :=

min{β1, β2}+ k
(
1 + α̂

1+α̂

)
.

Lemma 47 (Dyad). Let y+ ≥ x0 and Eχ(p) ≥ y−. The following hold.

(1) If (1 − α)(δ2 − δ1) ≥ 2α̂k, then there exists a unique equilibrium in G|x0
. Moreover, in

equilibrium:

Eχ1 = β1 + k
(

1 + α̂

1 + α̂

)
and Eχ2 = β2 + k

(
1− α̂

1 + α̂

)
,

which imply

Eχ2 − Eχ1 = β2 − β1 − 2 α̂

1 + α̂
k.

.

(2) If (1 − α)(δ2 − δ1) < 2α̂k, then there exist multiple equilibria in G|x0
. Moreover, in
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equilibrium:

(1− α)(δ2 − δ1) = α̂(d1 − d2), for some d2, d1 ∈ [−1, 1]

Eχ1 = Eχ2 = β1 + β2

2 + k + α̂

1− α̂
d1 + d2

2 k

∈
[
β1 + β2

2 + k − α̂

1− α̂k,
β1 + β2

2 + k + α̂

1− α̂k
]
.

(3) If 0 ≤ (1 − α)(δ2 − δ1) < 2α̂k, then there exists a unique potential maximizer in G|x0
.

Moreover, in the potential maximizer: (1− α)(δ2 − δ1) = 2α̂d1k, d1 ∈ [0, 1), and:

Eχ1 = β1 + k
(

1 + α̂

1 + α̂
d1

)
Eχ2 = β2 + k

(
1− α̂

1 + α̂
d1

)
,

which imply

Eχ1 = (β1 + β2)/2 + k.

Proof. The expected effort-game payoff to player i is:

Evi(χi, χj) = 2(1− α)δiEχi − (Eχi)2 + 2α̂EχiEχj − Vχi + 2α̂Cχiχj,

up to a term that is constant with respect to pi. The superdifferential of Evi(χi, χj) with respect
to pi is:

2µ(1− α)δi − 2µEχi + 2µα̂Eχj − ω + α̂ω − α̂ω∂pi
|pi − pj|.

In any interior equilibrium p:

0 ∈
(

1 −α̂
−α̂ 1

)
Eχ− (1− α)δ −

(
1 −α̂
−α̂ 1

)
1k − α̂

(
∂p1|p1 − p2|
∂p2|p2 − p1|

)
k

Thus, we obtain the following interior equilibrium condition. p ∈ (p0, p) is an equilibrium if,
and only if:

Eχ ∈ 1− α
1− α̂2

(
1 α̂

α̂ 1

)
δ + k1 + α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1|p1 − p2|
∂p2|p2 − p1|

)
k,

and in an equilibrium in which p1 > p2 the last term simplifies to a singleton:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2|p2 − p1|

)
k =

{
α̂

1 + α̂

(
1
−1

)
k

}
.
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In an equilibrium p in which p1 = p2, the last term can be written as:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1|p1 − p2|
∂p2|p2 − p1|

)
k = α̂

1− α̂2

(
∂p1|p1 − p2|+ α̂∂p2|p2 − p1|
∂p2|p2 − p1|+ α̂∂p1|p1 − p2|

)
k.

In the potential maximizer p, we have that: ∂p1|p1 − p2| = −∂p2|p2 − p1|, and so the last term
simplifies to:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1|p1 − p2|
∂p2|p2 − p1|

)
k = α̂

1 + α̂

(
1
−1

)
∂p1|p1 − p2|k.

�

Two-type network We assume that there are two groups of players, A and B, such that:
N = A∪B, and A∩B = ∅. We let nG := |G|, G ∈ {A,B}, and G(`),−G(`) denote, respectively,
the group of player ` and the other group. Moreover, we assume that: δ` = δG(`), and

γ`k = γG(`)G(k), for all `, k ∈ N.

We note that, by our maintained assumptions: γAB = γBA, and: γGF = o(n), because
nFγ

GF + (nG − 1)γGG ≤ 1, for all G,F ∈ {A,B}, G 6= F .
The potential function is such that

G(i) = G(j) implies v(x1, . . . xi, . . . xj, . . . xn) = v(x1, . . . xj, . . . xi, . . . xn),

so every equilibrium is represented by a pair (pA, pB), such that i ∈ A plays pA, and j ∈ B

plays pB. We let EχG(i) = Eχi in the potential maximizer p. We use αA := αγABnB

1−αγAA(nA−1) and
αB := αγBAnA

1−αγBB(nB−1) . We note that: αA ≤ αγABnB

αγABnB+αγAA(nA−1)−αγAA(nA−1) = 1, and, similarly,
αB ≤ 1.

We note that αA+αB−2αAαB

1−αAαB
∈ [0, 1], because:

αA + αB − 2αAαB > 0 ⇐⇒ αA
1− αA

+ αB
1− αB

> 0,

and

αA + αB − 2αAαB
1− αAαB

= 1− (1− αA)(1− αB)
1− αAαB

.

Also, we note that ∂
∂αG(i)

αA+αB−2αAαB

1−αAαB
=
(1−α−G(i)

1−αAαB

)2
.

Lemma 48. Let Γ be a two-type network, such that: βA ≥ βB, and let x0 ≥ βA + k − αA(1−
αB) 1

1−αAαB
k and βB + k + αB(1− αA) 1

1−αAαB
k ≥ Eχ(p).

(1) If βA − βB ≥ αA+αB−2αAαB

1−αAαB
k, then pA ≤ pB in the unique interior potential maximizer.
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Moreover:

EχA = βA + k − αA(1− αB) 1
1− αAαB

k

EχB = βB + k + αB(1− αA) 1
1− αAαB

k,

which imply:

EχA − EχB = βA − βB −
αA + αB − 2αAαB

1− αAαN
k.

(2) If βA − βB < αA+αB−2αAαB

1−αAαB
k, then pA = pB in the unique interior potential maximizer.

Moreover:

EχA = βA + k − αA(1− αB)
1− αAαB

dk

EχB = βB + k + αB(1− αA)
1− αAαB

dk, d ∈ [0, 1].

and βA − βB = αA+αB−2αAαB

1−αAαB
dk, which imply:

EχA = αB(1− αA)βA + αA(1− αB)βB
αB(1− αA) + αA(1− αB) + k.

Proof. The superdifferential of Evi(χ1, . . . , χn) with respect to pi, i ∈ A, evaluated at an
equilibrium, is:

2µ(1− α)δA − 2µEχi + 2µαγAA(nA − 1)EχA + 2µαγABnBEχB+
−ω + αγAA(nA − 1)ω + αγAB(nB)ω − αγAA(nA − 1)∂pi

|pi − pA|ω − αγABnB∂pi
|pi − pB|.

If p is the potential maximizer, then: pi = pG(i), and:

0 ∈ 2µ(1− α)δA − 2µEχA + 2µαγAA(nA − 1)EχA + 2µαγABnBEχB+
− ω + αγAA(nA − 1)ω + αγAB(nB)ω − αγABnB∂pA

|pA − pB|
0 ∈ 2µ(1− α)δB − 2µEχB + 2µαγBB(nB − 1)EχB + 2µαγBAnAEχA+
− ω + αγBB(nB − 1)ω + αγBA(nA)ω − αγBAnA∂pB

|pB − pA|.

We use αA := αγABnB

1−αγAA(nA−1) and αB := αγBAnA

1−αγBB(nB−1) . We note that: αA ≤ αγABnB

αγABnB+αγAA(nA−1)−αγAA(nA−1) ,
so αA ≤ 1, and, similarly, αB ≤ 1. Thus, if p is the potential maximizer, then pi = pG(i), and, for
some d ∈ ∂pA

|pA − pB|:

0 = 2µ(1− α)
 δA

1−αγAA(nA−1)
δB

1−αγBB(nB−1)

− 2µ
(

1 −α1
−α2 1

)(
EχA
EχB

)
−
(

1 −α1
−α2 1

)
1ω +

(
αA
−αB

)
ωd.
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Thus, p ∈ (p0, p)n is the unique potential maximizer if, and only if: pi = pG(i), i ∈ N , and:
(

EχA
EχB

)
=
(
βA
βB

)
+ k1 +

(
1 −αA
−αB 1

)−1(−αA
αB

)
kd, d ∈ ∂pA

|pA − pB|.

In the unique potential maximizer for pA < pB, we have:(
1 −αA
−αB 1

)−1(−αA
αB

)
kd = 1

1− αAαB

(
−(1− αB)αA
(1− αA)αB

)
k,

and:

EχA − EχB = βA − βB −
αA + αB − 2αAαB

1− αAαB
k.

�
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