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Abstract

I introduce a framework to study coordination in highly uncertain environments.
Coordination is an important aspect of innovative contexts, where: the more innovative a
course of action, the more uncertain its outcome. To explore the interplay of coordination
and informational complexity, this paper embeds a beauty-contest game into a complex
environment. I uncover a new conformity phenomenon. The new effect may push towards
exploration of unknown alternatives, or constitute a status quo bias, depending on the
network structure of the connections among players. In an application to oligopoly
pricing, an increase in complexity results in a higher level of conformity in pricing
policies. I study the new coordination problems introduced by complexity and propose an
equilibrium selection rule. In an application to multi-division organizations, sufficiently
high complexity “implements” the same profits as centralized decision-making. I also
study heterogeneity across players in the mapping from decisions to outcomes, and private
information about a status quo.
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1 Introduction

Coordination poses challenges in highly uncertain environments. Consider retailers that
share the same manufacturer and choose marketing strategies.1 Innovative advertisement
comes with uncertainty about the brand image of the manufacturer. Moreover, retailers
need to coordinate their advertisements and succeed in different markets. Does uncertainty
lead to a unified brand image, and do the marketing campaigns align with the interests of
the manufacturer? Coordination is also an important aspect of technological innovation.
Developers of messaging apps benefit from interoperability, as it addresses the uncertainty
surrounding which apps will be popular. Similarly, tech companies often converge on
standards for universal connectors. Do coordination motives lead to more exploration? This
paper studies coordination problems in the face of “incremental” uncertainty, referred to as
complexity, such that: the more innovative a decision is, the more uncertain its outcome
becomes.

I introduce a model of coordination within a complex environment. In the model, every
player wants the outcome of her action to be close to a target. The target of a player
combines her fixed favorite outcome with the individual outcomes of the opponents, leading
to a coordination-adaptation tradeoff. A given network of players determines how much
each target weighs each individual outcome. Analogous coordination motives arise in several
settings, including financial markets, oligopolistic competition, organizations, and labor
markets (Keynes, 1936; Topkis, 1998; Marschak and Radner, 1972; Diamond, 1982).

Complexity is modeled by the uncertainty about how actions translate into outcomes,
to capture that more innovative actions lead to more volatile outcomes. This informational
complexity involves a status quo and a covariance structure. The status quo is an action
that implies relatively low uncertainty. The covariance structure describes the likelihood that
two actions yield similar outcomes. For example, this complexity is relevant when deciding
about a financial investment, the adoption of novel pricing strategies, and how boldly to
innovate in new technologies. In the model, players simultaneously choose policies, and
there is an outcome for every policy, given by an outcome function. Players know that the
outcome function is the realized path of a Brownian motion. The initial point of the Brownian
motion represents the status quo: a known outcome corresponds to the initial policy. Instead,
different policies than the status-quo (initial) policy lead to outcomes known only up to a
noise. The more an outcome differs in expectation from the status-quo outcome, the higher
its variance; this approach to modeling complex environments is introduced by Callander
(2011a).

I show that the interplay of coordination and complexity leads to a novel conformity
phenomenon. In particular, expected outcomes are closer across players than in an environ-

1 This type of marketing for the manufacturer’s product is known as co-op advertising with multiple retailers
(Jørgensen and Zaccour, 2014).
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ment without complexity, in all equilibria when the network is complete. This conformity
occurs in addition to the status-quo bias identified by Callander (2011a) and the conformity
due merely to the presence of coordination motives. To separate the new conformity from
previously studied phenomena, I decompose equilibrium expected outcomes in terms of more
primitive objects: the equilibrium outcomes in a non-complex environment, the status-quo
bias absent strategic interactions, and a new strategic-uncertainty element due to the interplay
of complexity and coordination.

The new element in the equilibrium characterization arises from an endogenous leader-
follower relationship among players introduced by the covariance structure. In the model,
the follower in a pair of players is the one with the closest policy to the status quo. Consider
the two ways in which the policy of a player influences the incentives of her opponents. First,
policies enter into the expected targets of players, due to standard coordination motives.
Second, the policy of a player determines the correlation between her outcome and her
opponents’ outcomes. Given a pair of players with different policies, the only player whose
policy directly affects the covariance is the follower, not the leader.2 As a result, the follower
has an extra incentive to explore by choosing a policy in the direction of the leader. The
new incentive of the follower is the source of conformity. In general, the leader-follower
relationship induces an asymmetry among players that interacts with the exogenous structure
of connections.

Conformity has a delicate interaction with the network of players. A player may exert
substantial influence on a follower player through the network. This influence can be so strong
that it steers the follower away from a third player. In this case, “counter-formity” emerges,
leading to expected outcomes that are more distant between certain players than in the
no-complexity case. In general, the leader-follower relationship is determined in equilibrium.
The equilibrium decomposition serves to verify that a certain leader-follower structure can be
sustained.

To illustrate the conformity phenomenon, I study applications of the model. In oligopolistic
competition, coordination motives arise from strategic complementarities whenever the
incentives to raise prices increase with the prices of competitors. Moreover, a pricing
algorithm may rely on data not available when algorithmic pricing is adopted (Brown and
MacKay, 2023). Hence, complexity arises when innovative pricing rules are associated with
high uncertainty. In this case, conformity takes the form of concentrated expected prices
across firms. The presence of conformity suggests a downward bias when firm heterogeneity is
estimated from price data and the analyst does not control for complexity.3 The equilibrium
decomposition provides a tool for isolating the new conformity effect.

2 This property is due to independent increments, a reasonable assumption in innovative contexts owing to
a maximum-uncertainty principle (Jovanovic and Rob, 1990). However, the covariance structures implied by
other Gaussian processes have features that reminisce about a leader-follower relationship; for instance, the
Ornstein-Uhlenbeck covariance between two “outcomes” is increasing only in one “policy” (Bardhi, 2023).

3 Since Bresnahan (1987), a common empirical exercise is to infer the cost parameters from data, under
certain hypotheses about market structure and equilibrium behavior.
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I show that conformity increases in the complexity of the environment, whenever two
players exist who are the leader and the follower for each of their opponents. This order of
players occurs in applications, such as in an oligopoly with two firms with extreme marginal
costs. The measure of complexity is the additional uncertainty implied by a change in
expected outcome away from the status quo.4 The intuition for this comparative statics
follows from the “first-order” effect of an increase in complexity. In particular, matching
the outcome of a leader becomes more “cost-effective” for a follower, relative to targeting a
favorite outcome. The reason is that the two outcomes are the same when players choose the
same policy, regardless of the level of complexity. This comparative statics is consistent with
findings in social psychology. Since Asch (1951), psychologists observe that conformity “is far
greater on difficult items than on easy ones.” The “difficulty” is typically obtained by asking
experimental subjects about their “certainty of judgement” (Krech et al., 1962).5

New coordination problems arise in complex environments. The source of equilibrium
multiplicity is the presence of endogenous “kinks” in payoffs. Intuitively, at the margin there
is a premium to choosing the same policy as another player, because two individual outcomes
are the same whenever policies are the same. Hence, coordination problems are intimately
linked to the leader-follower relationship: by choosing the same policy of an opponent, a player
neutralizes the asymmetry. The location of kinks is determined in equilibrium: a player’s
payoff has a kink at every policy of an opponent. To make predictions for coordination in
complex environments, I study an equilibrium-selection rule. The coordination game admits
a “potential” with a unique maximizer, which acts as an equilibrium selection (Monderer
and Shapley, 1996).6 I characterize the potential-maximizer equilibrium, and I leverage the
characterization in applications, as a means to study welfare, select among multiple equilibria,
and for comparison with the no-complexity case (without complexity, the unique equilibrium
maximizes the potential.)

I study the interaction between the conformity motive and the network of players’
connections. In a two-type network, a decrease in inter-group heterogeneity below a tipping
point triggers coordination problems: every player faces an interval of policies sustainable in
equilibrium. This result is important for policy interventions that change favorite outcomes of
players (Galeotti et al., 2020): certain interventions may bring about coordination problems.
For sufficiently high complexity, extreme conformity prevails: all players choose the same
policy. The equilibrium selection allows to retrieve the heterogeneity between groups given
such homogeneous behavior. In particular, extreme conformity is observationally equivalent

4 Letting µ and ω be the drift and variance parameters of the Brownian motion, the measure of complexity
is ω/(2|µ|).

5 I also show that conformity increases in the strength of coordination motives and the number of players,
matching the observation that “yielding to the group pressures” is easier for higher “group cohesion” and
“group size” Krech et al. (1962).

6 The uniqueness of a potential-maximizer equilibrium obtains jointly with the multiplicity of equilibria
because the potential is not smooth. Two papers study specific nondifferentiable potentials as counterexamples
to the results for smooth potentials (Radner, 1962; Neyman, 1997).
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to the optimal choice of a representative player. The equilibrium selection pins down the
weighted average of favorite outcomes that constitutes the “representative” favorite outcome.

Complexity has implications for management of organizations with decentralized authority,
which includes practices such as co-op advertising and multi-branding. In multi-division
organizations, a division manager trades off coordination with other managers and adaptation
to idiosyncratic needs. Moreover, communication frictions induce noise over the implementa-
tion of managerial instructions. The noise is typically minimal if the instruction is about
maintaining the current situation. I show that an organization with decentralized authority
can implement profit maximization in sufficiently complex environments. Hence, complexity is
a rationale for decentralized organizations that leave the holding company with only oversight
authority.7

To investigate robustness of my results, I consider generalizations of the model. I establish
that the status-quo bias and the leader-follower intuition survive status-quo heterogeneity.
In particular, I study a general model that incorporates incomplete information about a
heterogeneous status quo across players. In the model, a vector of status-quo policies is
common knowledge and players have private information about their own status-quo outcomes.
The set of equilibria has a similar structure as in the homogeneous-status-quo case: there
exists a greatest and a least equilibrium, and they are in nondecreasing strategies. In
equilibrium, every player expects to be a leader for every opponent with a certain probability.

I separately identify the role played by variance and covariance of the environment in
a general model in which players have “correlated” outcome functions. In particular, the
interplay between coordination and complexity takes the form of a linear combination of
two effects — in the decomposition of equilibrium expected outcomes. First, a pure status-
quo bias, which arises with uncorrelated outcomes across players. This effect pushes every
player towards the status quo, and is magnified by the network of players. Second, a pure
experimentation motive that arises only with correlated outcomes. This effect pulls players
away from the status quo and it is introduced by the correlation component.

Related Literature I borrow the model of complexity from the literature initiated with
Callander (2011a), which studies a dynamic exploration-exploitation tradeoff using a Brownian
motion. The main role of the covariance structure in the dynamic interaction is to discipline
learning over time. Cetemen et al. (2023) study a similar complex environment in which
discoveries are correlated over time and members of a team contribute resources for exploration.
I contribute to the complexity literature by studying coordination motives and network games
in a complex environment with the Brownian covariance structure. I also show that the
status-quo bias survives the introduction of coordination motives and incomplete information
about a heterogeneous status quo. Other work considers strategic interactions and Gaussian

7 This result complements the literature that studies informational asymmetries within organizations, see,
e.g., Alonso et al. (2008); Rantakari (2008); Dessein and Santos (2006); the present model is biased towards
favoring centralization because it abstracts away from division managers’ private information.
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processes. In particular, the covariance structure has a direct role in the principal-agent
settings of Bardhi and Bobkova (2023) and Bardhi (2023), in which a principal incentivizes
agents to provide information about an underlying outcome function. These authors study
covariance structures that are characterized by the “nearest-attribute” property, including
the Brownian covariance.8 My paper focuses on the Brownian covariance because it has two
characteristics. First, the Brownian covariance preserves the strategic complementarities
of the coordination game (Lemma 1); second, such covariance contains a leader-follower
asymmetry that leads to conformity (Section 3). Other covariances are “asymmetric” but not
supermodular (e.g., squared-exponential covariance), and vice versa (squared-polynomial).
Garfagnini (2018) studies the rich welfare properties of complexity in a network game, under
an environment that does not exhibit a covariance structure, because the decision-outcome
mappings are drawn from player-specific independent Brownian motions. In Section 6, I
study the generalization of my model with imperfectly correlated outcome functions that
includes independent Brownian motions as a special case.

The literature on coordination games with quadratic ex-post payoffs includes models of
oligopolistic competition, peer effects, and network games (surveyed in Choné and Linnemer
(2020) and Jackson and Zenou (2015).) I show that complexity introduces coordination
problems under a common upper bound on the strength of coordination motives maintained
in this paper, also for payoffs that admit a unique correlated equilibrium without complexity
(Neyman, 1997). Moreover, complexity makes best responses nonlinear. The nonlinearity is
due to the kinks in expected payoffs and it implies that equilibrium strategies are necessarily
without constant slope in the heterogenous-status-quo game. Instead, the leading models of
quadratic-payoff beauty contests with incomplete information admit a unique equilibrium, and
the unique equilibrium features linear strategies in player’s privately known types (Radner,
1962; Morris and Shin, 2002; Angeletos and Pavan, 2007). As an implication, the general
game in this paper does not rely on results valid for incomplete-information beauty contests
with linear best replies. Instead, status-quo heterogeneity is modeled as an interim Bayesian
game (Van Zandt and Vives, 2007).9

Outline After introducing the model in Section 2, I study the conformity phenomenon in
Section 3, with an application to oligopoly pricing. Section 4 analyzes an equilibrium selection
and applications to network games and organizational economics. Section 5 contains the
general model. Section 6 discusses further generalizations and directions for future research.

8 Other strategic settings include: the dynamic models in Callander and Matouschek (2019), Callander
and Hummel (2014), and Garfagnini and Strulovici (2016), which analyze intertemporal interactions; the
communication models in Callander (2008), Callander et al. (2021), and Aybas and Callander (2023), in which
a sender informs a receiver about the underlying outcome function; and the electoral competition in Callander
(2011b). Gaussian processes are used in a similar way as in the complexity literature to study innovation,
price rigidity, and in psychology (Jovanovic and Rob, 1990; Ilut and Valchev, 2022; Ilut et al., 2020; Anderson,
1960).

9 The results of Van Zandt and Vives (2007) and Van Zandt (2010) cannot be applied off-the-shelf, so I
leverage the additional structure of preferences to establish measurability of the greatest-best-reply mapping.
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p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

χ

policy (pi)

outcome

Figure 1: An outcome function, mapping individual policies to individual outcomes, given by
the realized path of a Brownian motion.

2 Model

2.1 Players and Payoffs

Every player i ∈ N := {1 . . . n} has preferences over outcome profiles.

Payoffs An outcome profile is a list of individual outcomes x = (x1, . . . , xn) ∈ Rn. The
payoff to player i from the outcome profile x is

πi(x) = −
(
xi − (1− α)δi − α

∑
j 6=i

γijxj

)2
,

in which α ∈ [0, 1) measures the strength of coordination motives, δi is the favorite outcome
of player i, and γij ≥ 0 is the weight of the connection between player j and player i.
Connections are symmetric, so γij = γji for all players i, j ∈ N . Payoffs reflect a desire for
coordination because αγij is nonnegative. Similar payoffs are used to model organizations
and peer effects (Jackson and Zenou, 2015).

Environment Every player i chooses a policy pi ∈ P = [p, p] simultaneously, for p, p ∈ R
with p < p. The outcome corresponding to policy p ∈ P is given by the outcome function
χ : R → R, evaluated at p. The outcome function is the realized path of a Brownian motion
with drift µ < 0, variance parameter ω > 0, and starting point (p0, χ(p0)).10 Figure 1
illustrates one such outcome function. Players know the status-quo policy p0 ∈ (p, p), the
corresponding status-quo outcome χ(p0) ∈ R, and the parameters of the Brownian motion,
µ and ω. The Brownian motion disciplines the beliefs of players about outcomes. Player i
believes that χ(p) and χ(q) are jointly Gaussian random variables, for all pairs of policies
p, q ∈ P \ {p0}. This structure of uncertainty captures a complex environment because a

10 See Definition 1.1 and 5.19 in Karatzas and Shreve (1998), Chapter 2, for the definition of a Brownian
motion with these parameters.
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p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(a) Expected value of outcomes.

p0
q

r

χ(p0)

policy (pi)

outcome

density

(b) Expected value and variance of outcomes.

Figure 2: Player i believes that outcomes are given by normal random variables. The
expectations of these random variables are determined by the drift line of the Brownian
motion (panel (a)). The closer the policy r is to the status-quo policy, the lower the variance
of outcome χ(r), as inpanel (b).

player is more certain about the outcome of a policy the closer the policy is to the status-quo
policy (Figure 2). This way of modeling the complexity of an environment is first used by
Callander (2011a). The measure of the complexity is k := ω

2|µ| .
Player i’s payoff from the outcomes corresponding to the policy profile p ∈ Pn is given

by πi(χ(p1), . . . , χ(pn)), which we denote by πi(χ(p)). Player i’s expected payoff from the
policy profile p given the status-quo outcome χ(p0) is denoted by Eπi(χ(p)).

2.2 Strategies and Equilibrium

The main focus of the paper is the game G(x0) in which the strategy space of player i is
the policy space P and player i’s utility is her expected payoff given the status-quo outcome
x0 ∈ R. In particular, I study the strategic-form game 〈N, {P,Eπi(χ(·))}i∈N 〉 given that
χ(p0) = x0. An equilibrium is a profile of policies p such that: for every player i, pi maximizes
expected payoff of player i given that her opponents choose policies according to p.11

Definition 1. The policy profile p ∈ Pn is an equilibrium if:

Eπi(χ(p)) ≥ Eπi(. . . , χ(pi−1), χ(qi), χ(pi+1), . . . ), for all qi ∈ P and i ∈ N.

In the specific case of no complexity, which is the limit game when ω = 0, the policy-
outcome mapping is given by ψ : pi 7→ χ(p0) + µ(pi − p0), as argued in the next section, and

11 In the equilibrium definition, “. . . , χ(pi−1), χ(qi), χ(pi+1), . . . ” denotes the outcome profile corresponding
to (χ(qi), (χ(pj))j∈N\{i}). Due to strict concavity of pi 7→ Eπi(χ(p)), player i’s best response is unique
(Appendix, Lemma 18); hence, focusing on pure strategies is without loss. The operator E denotes the
expectation given χ(p0) = x0.

9



the profile of outcomes corresponding to the policy profile p is ψ(p). An equilibrium without
complexity is a a Nash equilibrium of the strategic-form game 〈N, {P, πi(ψ(·))}i∈N 〉.

2.3 Discussion and Interpretation

This section interprets the connections between players as arising from a network studies
certain implications of the Brownian-motion structure of uncertainty. The reader who is
interested in results and applications may skip the present section.

Network of Players The matrix of connections is Γ := [γij : i, j ∈ N ], which is interpreted
as the adjacency matrix of a network of players, letting γii = 0 for all i ∈ N . I use δ for the
column vector of favorite outcomes, I for the identity matrix and B(M) := (I −M)−1 for
the Leontief inverse of the n-by-n matrixM , when I−M is nonsingular. The Katz-Bonacich
centrality of players in the network is useful in the study of equilibria.

Definition 2. The centrality of player i is the ith entry of the column vector β given by:

β = (1− α)B(αΓ)δ.

The graph of the network 〈N,Γ〉 offers an interpretation for centrality.12 The ij entry
of the Leontief inverse of αΓ counts the walks of every length from node i to node j and
discounts walks of length ` by α`, given that B(αΓ) =

∑∞
`=0 α

`Γ`. The centrality of player i
counts all “α-discounted” walks starting from i and weighs every walk to player j by (1−α)δj .

Complexity The following formulas are useful to analyze the implications of the Brownian-
motion structure of uncertainty, derived in the Appendix (Section A.2). The parameters of
the distribution of (χ(p), χ(q)), given the status-quo outcome χ(p0) are denoted by Eχ(p),
Vχ(p) and C(χ(p), χ(q)). For all policies p, q ∈ P , we have

Eχ(p) = χ(p0) + µ(p− p0),

Vχ(p) = |p− p0|ω,

C(χ(p), χ(q)) =

min{Vχ(p),Vχ(q)} if p, q ≥ p0 or p0 ≤ p, q,

0 if p > p0 > q or q > p0 > p.

Larger changes in individual expected outcomes are associated with high variance of the
corresponding outcomes. The measure of complexity, k, is the additional variance implied
by a marginal change of expected outcome, away from the status quo, scaled by 1/2. The
covariance expression is due to the independent-increments property of the Brownian motion,
and is determined by the closest policy to the status quo.

12 The matrix I − αΓ is positive definite due to Assumption 1 (next section) so centralities are well-defined
and B(αΓ) =

∑∞
`=0 α

`Γ`. Other definitions of Katz-Bonacich centrality do not adjust by (1− α) or use the
term “weighted” if δi 6= 1, i ∈ N .
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p0 p∗i p◦i

δi

δi + k

(p0, x0)

Eχ(·)

policy (pi)

outcome

Figure 3: If α = 0, player i has a unique optimal policy p∗i . The policy p∗i trades off closeness
of the expected outcome to δi with the variance induced by the distance from the status-quo
policy p0. (For this figure: δi = 1, µ = −1/2, ω = 1/2, α = 0, p0 = 0 = p, χ(0) = 2.5, and
p ≥ 3.)

No-Coordination Benchmark When α = 0 there isn’t any strategic interaction. The
game reduces to a collection of decision problems and corresponds to the static version
of Callander (2011a). In that case, player i’s optimal policy p∗i trades off closeness of the
expected outcome to δi with the variance induced by the distance of p∗i from the status-quo
policy p0. Hence, player i does not optimally choose the policy p◦i such that Eχ(p◦i ) = δi;
except possibly in the knife-edge case in which χ(p0) = δi. Player i’s optimal policy reflects
a status-quo bias, because it’s closer to the status quo than the policy p◦i is. To find the
optimal policy, player i does not consider the correlation between outcomes of distinct policies
because only her own outcome is payoff-relevant. In particular, player i’s expected payoff is

Eπi(χ(p)) = −E(χ(pi)− δi)2

= − (Eχ(pi)− δi)2︸ ︷︷ ︸
quadratic

− Vχ(pi).︸ ︷︷ ︸
piecewise-linear

The first equality follows from the definition of πi and the second from mean-variance
decomposition. The variance term is a continuous and piecewise-linear function of player i’s
policy with a kink at the status-quo policy.13 The presence of this kink leads to a second
form of the status-quo bias: for an interval of status-quo outcomes, the optimal policy is the
status-quo policy (Callander (2011a) and Corollary 1.)

Coordination and Complexity Players take into account the correlation between out-
comes of different policies, because the outcomes of opponents are payoff-relevant. In
particular, the same distance in expected outcome from the status quo is “less expensive” —

13 I adopt the convention of calling a function linear when it is affine.
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in terms of uncertainty — if it implies a high covariance with the outcomes of other players.
The interplay of strategic interaction (α > 0) and complexity of the environment (k > 0) gives
rise to endogenous kinks in expected payoffs. Player i’s expected payoff in the two-player
case with δi = 0 and γij = 1, j 6= i, is as follows,

Eπi(χ(p)) = −E(χ(pi)− αχ(pj))2

= − (Eχ(pi)− αEχ(pj))2︸ ︷︷ ︸
quadratic

− Vχ(pi)︸ ︷︷ ︸
piecewise-linear

+ 2αC(χ(pi), χ(pj))︸ ︷︷ ︸
piecewise-linear

−α2 Vχ(pj).

If k > 0 and α > 0, the mean-variance decomposition is “kinked” due to the presence of
covariance terms. The location of kinks is endogenous: the expected payoff of player i has a
kink at the policy of player j. A second type of kink is located at the status-quo policy and
it leads to a status-quo bias (as in Callander (2011a) and similarly to Ilut et al. (2020).)

No-Complexity Benchmark The special case of the model without complexity is es-
sentially equivalent to the linear-best-response game S := 〈N, {R, πi}i∈N 〉, studied in the
literature on games played over networks (Ballester et al., 2006). There exists a unique Nash
equilibrium in S, under a commonly used upper bound on the magnitude of coordination mo-
tives: the strategy profile (β1, . . . , βn) (Corollary 2). The result holds because the best-reply
mapping of the game S is affine and contractive. Furthermore, Neyman (1997) establishes
uniqueness of the correlated equilibrium. With complexity, best responses are not as smooth
because of endogenous kinks, and they admit a multiplicity of equilibria under the same
upper bound on coordination motives.

Notation The set of strategy profiles, Pn, and the set of profiles of opponents’ strategies,
Pn−1, are endowed with the product order. ≤ denotes all partial orders and < the asymmetric
part of ≤. For posets S and T , the function g : S × T → R exhibits strictly increasing
differences if t 7→ g(s′, t)− g(s, t) is increasing for all s′, s ∈ S with s < s′. −i denotes N \ {i}.
The column vector corresponding to the list of real numbers (x1, . . . , x`) is denoted by x, and
the column vector of ones by 1. The Hadamard (element-by-element) product of matrices A
and B is denoted by A�B. Proofs are in the Appendix.

2.4 Analysis

Coordination motives often lead to multiple equilibria. The following requirement ensures
existence and uniqueness of an equilibrium absent complexity, and is common in the literature
on games played over networks (Jackson and Zenou, 2015).

Assumption 1. Let λ(Γ) denote the largest eigenvalue of Γ, then:

αλ(Γ) < 1.
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This requirement upper bounds the magnitude of overall coordination motives and isolates
coordination problems induced by the introduction of complexity.14

The game G(x0) is of strategic complementarities.

Lemma 1 (Strategic Complementarities). For every player i, the expected payoff Eπi(χ(p))
exhibits strictly increasing differences in (pi,p−i).

Intuitively, the returns to choosing higher policies are increasing in the opponents’ policies.
The key observation in the proof leverages the covariance structure given by the Brownian
motion discussed in Section 2.3. When opponents increase their policies, a higher own policy
implies (i) a closer expected outcome to the opponents’ expected outcomes, (ii) a different
volatility of own outcome, and (iii) a change in the covariance between the outcomes of
players. The willingness to incur volatility stems from variance and covariance elements, and
it varies with opponent’s policies. By the results discussed in Section 2.3, the covariance
between two outcomes is supermodular in the associated policies. The reason is that only the
player with the least-volatile outcome is “controlling” the covariance directly, in every pair of
players. Thus, if player i is a follower of player j — player i incurs less volatility than player
j —, then she has an incentive to adjust her policy towards player j’s policy. Moreover, the
incentives of the leader player — player i — are not affected by player j’s policy, except via
the target.

Due to strategic complementarities, the set of equilibria is nonempty and admits an order
structure.

Proposition 1 (Structure of the Equilibrium Set). There exist a greatest and least equilib-
rium.

Strategy spaces are compact intervals and the expected payoff function of player i is strictly
supermodular in (pi,p−i) by Lemma 1. A known argument based on Tarski’s fixed-point
theorem establishes existence (Milgrom and Roberts, 1990; Vives, 1990).

The following result offers a characterization of equilibria in the form of a decomposition
of equilibrium expected outcomes.

Proposition 2 (Equilibrium Decomposition). The profile of policies p ∈ (p, p)n is an
equilibrium if, and only if:

Eχ(p) = β + bk + α(I − αΓ)−1(Γ�A)1k,
14 The square matrix Γ is nonnegative, so λ(Γ) is equal to the spectral radius of Γ (Theorem 8.3.1 in Horn

and Johnson (2013)). To see why the assumption imposes an upper bound on the magnitude of coordination
motives, note that λ(Γ) is nonnegative and nondecreasing in γij , so the upper bound on α is more stringent
when players are more interconnected.
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for a matrix A = [aij : i, j ∈ N ] and a vector b such that aij , bi ∈ [−1, 1] and

bi =

1 if pi > p0,

−1 if pi < p0,
and aij =

1 if pi > pj ,

−1 if pi < pj .

The decomposition is stated for equilibria in which all players choose interior policies.15

The decomposition provides a tool to verify whether a policy profile is an equilibrium via the
induced expected outcomes. If the expected outcomes satisfy the decomposition for a matrix
A, which is constrained by the induced location of players in the policy interval, then the
policy profile is an equilibrium.

The three summands that constitute equilibrium expected outcomes are labeled in order
to study the interplay between coordination and complexity:

Eχ(p) = β︸︷︷︸
equilibrium outcomes
without complexity

+ bk︸︷︷︸
status-quo

bias

+ α(I − αΓ)−1(Γ�A)1k︸ ︷︷ ︸
additional strategic-uncertainty

effect

.

If k = 0, the decomposition characterizes the unique equilibrium without complexity, which
is determined by the centrality vector (see Lemma 2 below.) If α = 0, the decomposition
characterizes the unique equilibrium without coordination motives, which is determined by
the vector of favorite outcomes and a status-quo-bias term (Corollary 1 below.) The interplay
of coordination motives and complexity generates an additional term: the endogenous matrix
A, which keeps track of leader-follower asymmetries in every pair of players.

The decomposition leaves room for multiple equilibria and coordination problems: possibly
for multiple policy profiles there exists a matrix A satisfying the decomposition. Figure
4 shows that a two-player game admits an interval of policies that can be sustained in
equilibrium.

In order to attribute the multiplicity to the interplay between coordination motives
and complexity, the following results focus on the particular cases of no complexity and no
coordination motives. In both benchmark cases there exists a unique equilibrium.

Corollary 1 (No Coordination). Let α = 0. There exists a unique equilibrium of G(x0).
Moreover, the profile of policies p ∈ (p, p)n is an equilibrium of G(x0) if, and only if:

Eχ(p) = β + bk,
15 The complete characterization accounts for the boundary cases of players’ equilibrium best responses, and

it is stated in Appendix C.
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(δ, p0)
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outcome (χ(p0))

po
lic
y
(p
i
)

Figure 4: The grey area — including black lines and the point (δ, p0) — illustrates the
equilibrium set, represented by player i’s policy, for every status-quo outcome. In particular,
if n = 2 and δ1 = δ2 =: δ, then every equilibrium p is symmetric, i.e., p1 = p2. (For this
figure: n = 2, δ1 = δ2 = 0, µ = −1/2, ω = 1/2, α = 1/3.)

for a vector b such that bi ∈ [−1, 1] and

bi =

1 if pi > p0,

−1 if pi < p0.

Corollary 2 (No Complexity). There exists a unique equilibrium of the game G(x0) without
complexity. Moreover, the profile of policies p ∈ (p, p)n is an equilibrium of G(x0) without
complexity if, and only if:

ψ(p) = β.

The following remark focuses on identical players. In contrast to the single-player case
(Callander (2011a), Corollary 1), there exist multiple equilibria. Moreover, coordination
problems increase in α: the equilibrium set grows in the inclusion sense as α increases
(Appendix, Corollary 3).

Remark 1 (n Identical Players). Let γij = γ and δi = 0 for all players i, j ∈ N with
i 6= j. In every equilibrium p, pi = pj for all players i, j ∈ N (proofs for this remark as
in Appendix, Section D.) Moreover, let q(a) and q(a) be, respectively, the policies in the
least and greatest equilibrium when the degree of coordination motives is α = a. If α1 < α2

and q(α1), q(α1), q(α2), q(α2) ∈ (p0, p), then q(α2) < q(α1) and q(α2) > q(α1). For intuition,
suppose the policy space is [p0, p]. Then, the least equilibrium decreases in α and the greatest
equilibrium increases in α for a complete network. As shown in the Appendix, the equilibrium
set for a complete network with δ = 0 gets larger in set inclusion as α increases. As a result,
the greatest equilibrium (i.e., the equilibrium with the least volatile outcomes) gets closer
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to the status quo, and the least equilibrium (i.e., the equilibrium with the most uncertain
outcomes) involves more exploration, as α increases.

3 Conformity

This section uncovers a new conformity phenomenon. Conformity is due to the interplay
between coordination and complexity that is present in the decomposition of equilibrium
expected outcomes (Proposition 2), via the endogenous matrix A that keeps track of leader-
follower relationships.

3.1 Example

To develop the intuition for how the conformity phenomenon arises, I start with a two-player
example, i.e., n = 2. Furthermore, assume that the favorite outcomes are sufficiently distinct,
δ1 − δ2 > 2kα/(1− α). This ensures that the centralities are strictly ordered, β1 > β2, there
exists a unique equilibrium p?, and player 1 is the follower (p > p?2 > p?1 > p0, for sufficiently
large χ(p0) and p.)16 Recall that each policy choice implies a unique expected outcome,
hence, in what follows, I use the expected outcomes instead of the policies as the players’
choice variable.

The best response of player i in the game without complexity is the expected outcome

(1− α)δi + αEχ(pj), (1)

which is a function of the expected outcome of player j. There exists a unique pair of expected
outcomes that induces an equilibrium:

(
β1, β2

)
(Corollary 2 and Panel (a) in Figure 5.)17

The distance between equilibrium expected outcomes is given by centralities: β1 − β2.
Complexity introduces two elements to the best-response analysis, a status-quo bias and

a leader-follower asymmetry, reflecting variance and covariance features of the environment.
First, consider a model with noisy and independent outcomes (which is illustrated in panel
(b) of Figure 5, see also Section 6.) In this case, the best response of player i is the expected
outcome

(1− α)δi + αEχ(pj) + k. (2)

The best response shifts upwards, with respect to the case of no complexity, i.e., expression
(1), by the same amount as in the single-player game (Callander, 2011a). An incentive to stay
close to the status quo emerges and there is not any leader-follower asymmetry. There exists
a unique pair of equilibrium expected outcomes:

(
β1 +mk, β2 +mk

)
, in which m = 1/(1−α)

is the social multiplier, studied in network games (Jackson and Zenou, 2015). The multiplier
16 The remaining cases are considered in Appendix, Section E.
17 To make the discussion simpler, best responses are restricted on

(
Eχ(p), χ(p0)

)
.
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p?1

β2

β1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(a) The equilibrium in the game without com-
plexity. The expected outcomes are given by the
centrality of players, (β1, β2).

p∗1 p∗2p?1

↑ β2 + 1
1−αk

↑ β1 + 1
1−αk

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(b) Noisy and independent outcomes. The equi-
librium expected outcomes are given by central-
ity of players and the adjusted status-quo bias,
(β1 +mk, β2 +mk). The arrows indicate the equi-
librium status-quo bias: expected outcomes are
higher than in the game without complexity (panel
(a)).

p?1 p?2

↓ Eχ(p?2)

↓ Eχ(p?1)

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(c) Equilibrium in G(x0). The expected outcomes
are given by the decomposition in Proposition
2, which includes the leader-follower asymmetry,
(β1+k−k α

1+α , β2+k+k α
1+α ). The arrows indicate

the extra exploration induced by the covariance
structure: expected outcomes are lower than in
the game without correlation (panel (b)).

Figure 5: Panel (a) illustrates the equilibrium in the game without complexity. Panel (b)
illustrates the equilibrium when outcomes are noisy but independent across policies, given
Vχ(p) = 0.5p and C(χ(p), χ(q)) = 0, for p, q > p0. Panel (c) illustrates the equilibrium in the
game G(x0) when ω = 1/2. (For the figures: δ1 = 2, δ2 = 0, µ = −1/2, ω = 1/2, α = 1/3, p0 =
0 = p, χ(0) = 2.5, p > 2.75.)
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magnifies the status-quo bias identified by Callander: when player i moves towards the status
quo, player j has an incentive to do the same (due to the presence of αEχ(pi) in the best
response of player j.) Player 1 is a “follower” only in the sense that she incurs less uncertainty
than player 2. In equilibrium, the distance between expected outcomes is pinned down by
centralities, β1 − β2, because best responses shift by the same amount. Hence, an increase in
uncertainty alone does not lead to further conformity.

Consider the complex environment in the game G(x0), i.e., with noisy and correlated
outcomes according to the Brownian motion. The best response of player 1 is:

(1− α)δ1 + αEχ(p2) + k − 2αk, (3)

while the best response of player 2 is the same as with uncorrelated outcomes, i.e., expression
(2). The introduction of correlation makes player 1 willing to explore more. Hence, the
follower has an incentive to catch up with the leader, which clashes with the push towards
the status quo. This exploration motive is reflected by a downward shift of the best response
of player 1 — relative to the uncorrelated-outcomes case of expression (2). There is a unique
equilibrium p? for the given leader-follower relationship, described by the pair of expected
outcomes

(
β1 + k− k α

1+α , β2 + k + k α
1+α

)
. In general, the equilibrium exhibits three features,

studied in the rest of this section.
(1) Conformity. Additional conformity arises due to complexity. In particular,

Eχ(p?1)− Eχ(p?2)− (β1 − β2) < 0.

(2) The new conformity increases (locally) in complexity. The difference in expected
outcomes, netting out β1 − β2, is:

Eχ(p?1)− Eχ(p?2)− (β1 − β2) = −2 α

1 + α
k.

Strict monotonicity is local. If complexity exceeds the cutoff implied by our requirement —
i.e., δ1 − δ2 > 2kα/(1− α)) —, then players have the same equilibrium expected outcome.

(3) The leader “pulls” the follower away from the status quo. With the introduction of
complexity, the follower is facing two new incentives. First, she is pushed towards the status
quo, via the status-quo bias that is present also without correlation in outcomes. Second, she
is pulled away from the status quo, via the conformity that is introduced by the covariance
structure. The interplay between the covariance of the environment and coordination motives
leads to an extra exploration incentive, when “controlling” for the variance effect that is
isolated in the uncorrelated-outcomes case (Figure 5).

In general, conformity is “scaled” by the correlation between outcomes. In particular,
suppose two Brownian motions, with same initial points, drift and variance, that are correlated
with parameter ρ (see Section 6.) While the best response of the leader is identical to the
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no-correlation case (expression 2), the best response of the follower is

(1− α)δ1 + αEχ(p2) + k − 2αρk,

in which the follower’s exploration motive is scaled by ρ. Hence, the higher the correlation,
the stronger the conformity effect. In particular, Eχ(p̃1)− Eχ(p̃2)− (β1 − β2) = ρ(−2 α

1+αk),
in an equilibrium p̃. The presence of a nontrivial covariance structure induces players to
explore more without sacrificing coordination.

3.2 Pairwise Conformity

Under a complete network, complexity unambiguously leads to a strong form of conformity,
that holds for all pairs of players and equilibria of G(x0).

Lemma 2. Let γij = γ for all players i, j ∈ N with i 6= j, and p ∈ (p, p)n be an equilibrium.
If pi < pj, then:

Eχ(pi)− Eχ(pj) < βi − βj .

The above result compares the expected outcomes of every pair of players in equilibrium
to the no-complexity case, across all equilibria. The introduction of complexity makes players
choose closer policies.

An equilibrium p is ordered if it satisfies p0 < p1 < p2 < · · · < pn < p.18 For ordered
equilibria, conformity (locally) increases with the complexity of the environment.

Lemma 3. Let γij = γ for all players i, j ∈ N with i 6= j, and p ∈ (p0, p)n be an ordered
equilibrium. Then, for all i ∈ {1, . . . , n− 1},

Eχ(pi)− Eχ(pi+1) = βi − βi+1 − 2 αγ

1 + αγ
k.

The comparative statics holds locally. If the conformity motive is sufficiently strong, the
difference in favorite outcomes does not sustain the leader-follower asymmetry. This is the
case, for instance, if complexity exceeds the cutoffs implied Lemma 3. In this case, extreme
conformity arises: the relevant players choose the same policy. A second instance of complete
conformity is when players are identical (Remark 1).

3.3 Counterformity

Conformity interacts with the network of players. A player may exert substantial network
influence on a follower player. If this influence is strong enough, it drives the follower away

18 Equilibrium actions are naturally ordered by the primitives of certain economic environments. In
oligopolistic competition, for instance, demand intercepts and marginal costs order equilibrium prices (Section
3.5).
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Figure 6: The additional conformity is defined by Cij = Eχ(p?i ) − Eχ(p?j ) − βi + βj , for
players i, j ∈ N in an equilibrium p?. Suppose that there exists a “middle” player, player
2. In particular, player 2 is the follower to player 3 and the leader to player 1. When
the connection between player 1 and 2 is sufficiently weak (γ12 < γL), the middle player
values the pull of the “global leader” more than the push towards the status quo of the
global follower. As a result, counterformity arises between player 1 and 2. A similar
phenomenon occurs between player 2 and 3 when γ12 is sufficiently large. (For this figure:
n = 3, γ23 = 0.2, γ13 = 0, δ1 = 1, δ2 = 0, δ3 = −1, k = 2, α = 0.45, p0 = 0 = p and sufficiently
large χ(0), p.)

from a third player. “Counter-Formity” emerges when equilibrium expected outcomes in
a pair of players are more distant than in a non-complex environment. This situation is
illustrated in Figure 6, with a three-player example.

In general, conformity has a delicate interaction with the network of players. Consider an
ordered equilibrium. Player n is a leader for every other player, while player 1 is a follower
for every opponent. The first term of the infinite sum induced by α(I − αΓ)−1(Γ�A)1k,
i.e., αk(Γ�A)1k, represents a “first-order” conformity effect. While player n’s opponents
are choosing policies closer to the status quo than her, player 1’s opponents are incurring
more uncertainty than him.19 Hence, player n has an extra incentive than player 1 to choose
a policy close to the status quo. This incentive is an endogenous status-quo bias for player n
relative to player 1 because it is determined in equilibrium. I tentatively define the “extra
status-quo bias” for player n that takes into account the connections among players by
averaging the entries in the nth row of A, each weighted according to the connection of player
n with the corresponding opponent; this average yields

∑
j

anjγ
nj > 0.

The same intuition leads to an “extra exploration motive” for player 1,

∑
j

a1jγ
1j < 0.

19 This configuration of players implies that anj = 1, j 6= n, and a1k = −1, k 6= 1 (Proposition 2).
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The vector αk(Γ�A)1 collects these first-order incentives of all players, each scaled by αk.
The complete intuition takes into account how the extra status-quo biases and exploration
motives feed into the network of players. The resulting equilibrium strategic-uncertainty
effect is

(Γ�A)1αk + αΓ(Γ�A)1αk + (αΓ)2(Γ�A)1αk + . . . ,

which yields the vector B(αΓ)(αΓ � A)1k, present in the decomposition of equilibrium
expected outcomes. Thus, player i’s strategic-uncertainty effect counts all the discounted
walks starting from i and weighs each walk to player j by the endogenous status-quo bias
αk
∑
` aj`γ

j`.
As the next result suggests, heterogeneity in network connections is related to counterfor-

mity. We say that Γ is a line if: (i) γii+1 = 1 for all i ∈ {1, . . . , n− 1}, (ii) γii−1 = 1 for all
i ∈ {2, . . . , n}, and (iii) γij = 0 otherwise. In a line network, conformity emerges pairwise,
and it increases in complexity.

Lemma 4. Let Γ be a line, α ≤ 1/2, and p ∈ (p0, p)n be an ordered equilibrium. Then, for
all i ∈ {1, . . . , n− 1},

Eχ(pi)− Eχ(pi+1) = βi − βi+1 − cik,

for some ci > 0.

In Figure 6, Γ is a line only when γ12 = γ23, in which case there is “only” conformity.

Remark 2 (Interventions). The design of network interventions studies changes in favorite
outcomes that induce certain equilibrium behavior of players (Galeotti et al., 2020). Suppose
an ordered equilibrium in a complete network or in a line. Moderate changes in favorite
outcomes do not affect conformity. Hence, if a policymaker adopts a “small” intervention, the
presence of complexity does not lead to unintended consequences; the results about optimal
interventions under a “small budget” are robust to a low level of complexity. Substantial
interventions, on the other hand, change the leader-follower relationships, and, so, the pattern
of conformity.

3.4 Discussion

The conformity effect is not specific to the abstract coordination game G(x0). Incremental
uncertainty and coordination motives are present in many economic environments.

• In oligopolistic competition, firms that rely on algorithmic pricing face uncertainty over
their own listed prices. This uncertainty arises because an algorithm conditions prices
on data not available when the algorithm is selected (Brown and MacKay, 2023). Price
competition exhibits strategic complementarities in many models of oligopoly. In Section
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3.5, we model firms that choose pricing policies knowing the resulting listed prices up
to some noise — which may reflect market uncertainty or the recent introduction of
algorithmic pricing. As the environment becomes more complex, firms choose more
similar pricing policies. This result suggests that, without considering the complexity
of the relevant industry, estimates of firm parameters from price data show reduced
heterogeneity across firms.

• In social psychology, it is documented that conformity increases in the difficulty of the
task and in the “cohesion” of the group (Krech et al., 1962). By the comparative statics
results, conformity increases in complexity, the strength of coordination motives, and
the number of players.20

• Peer recognition is important in scientific research (Partha and David, 1994). In general,
coordination motives are present in certain interactions in which exploration of unknown
alternatives is important. If society values exploration, conformity may limit learning
about the underlying outcome function.21 The presence of conformity is important for
the design of incentives for research and innovation.

• The management of every subsidiary owned by the same holding company coordinates
with other subsidiaries and adapts to idiosyncratic circumstances. Communication
frictions are a source of noise in the implementation of production processes. This
noise may be particularly relevant for the adoption of innovative technologies. In
Section 4.3, I show that an organization with decentralized decision-making — e.g., a
holding company with only oversight capacities — can implement profit maximization in
sufficiently complex environments. This result suggests that centralized decision-making
may be less desirable in the presence of coordination problems. The analysis also points
to a responsibility of the holding company’s management: leveraging the coordination
problems induced by the environment and making maximization of the holding’s profits
a focal point for the management of subsidiaries.

• In primary elections, career concerns determine the choice of platforms of politicians,
because the winner has authority over the campaign in a future general election.
Often, the consequences of extreme policies are unknown. In separate work, I study
elections under complexity, in which each competitor represents a combination of (i)
a constituency of voters and (ii) a career-concerned politician. I find that complexity
lessens the polarization of platforms. This result suggests that better information of

20 The main comparative statics is in Lemma 3, a simple corollary is that “overall” conformity increases in
the number of players: Eχ(p1)− Eχ(pn) = βi − βi+1 − 2(n− 1) α

1+αk. Similar results follow from Lemma 4.
21 In Brownian-motion models, however, learning occurs in two ways: radical and incremental experimentation,

given, respectively, by the extreme (max{p1, . . . , pn} and min{p1, . . . , pn}) and non-extreme policies that are
chosen (similarly to Garfagnini and Strulovici (2016).) If conformity increases, less is known about radical
experimentation, but, possibly, more about incremental experimentation.
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political parties about the policy-outcome mapping — from, e.g., lobbies and interest
groups — may increase political polarization.

In order to study different games in which a similar equilibrium analysis holds, I define an
auxiliary utility function of player i over outcomes, vi(x) = 2(1−α)δixi−x2

i +2α
∑
j∈N γ

ijxixj .
The next result studies the strategic-form game F (x0), in which players and strategy spaces
are the same as in G(x0) and utility functions are Ev1(χ(·)), . . . ,Evn(χ(·)).

Lemma 5 (Equivalence). For every player i ∈ N , there exists a function gi : Pn−1×R → R
such that:

Eπi(χ(p)) = Evi(χ(p)) + gi(p−i, x0) for all p ∈ Pn, x0 ∈ R.

The game F (x0) has the same set of equilibria as G(x0) because the games are Von-
Neumann-Morgenstern equivalent (Morris and Ui, 2004). The applications in this paper
leverage the above result to apply the analysis in the preceding section.

3.5 Application 1: Oligopoly Pricing

I study the implications of conformity for oligopoly pricing. I model competition among
firms who set pricing policies, or algorithms, knowing the resulting price only in expectation.
Conformity takes the form of closer pricing policies across firms in more complex environments.

Model A representative consumer has quasi-linear preferences over bundles of n+ 1 goods,
which are represented by the quadratic utility function U such that

U(q1, . . . , qn,m) =
∑
i

aiqi −
1
2b
∑
i

q2
i −

1
2c

∑
i,j:j 6=i

qiqj +m,

in which m denotes the numéraire good, and b > c ≥ 0. The last condition is to study
substitute goods and a well-defined demand system leading to strategic complementarities in
the resulting price-setting firm interaction. The coefficients of the Marshallian demand of the
representative consumer are normalized so that the own-price coefficient is −1 in the demand
for every good i ∈ {1, . . . , n}.22

Each price is set through the decision of one of n firms. Firm i has constant marginal
costs — parametrized by ci — and no fixed costs. We define a strategic-complementarity
coefficient ζ := 1−(b−c)

b−c ∈
[
0, 2

n−1

)
and the net demand intercept for product i, âi :=

ai − ci − ζ
∑
j 6=i(aj − cj).23 Given a profile of prices net of marginal costs, x, the profits of

22 The Marshallian demand is well-defined because the Hessian of the quadratic form (q1, . . . , qn) 7→
U(q1, . . . , qn,m) is negative definite whenever b > c ≥ 0 Amir et al. (2017). The matrix of demand coefficients
arising from the representative consumer [Dij : i, j ∈ N ] is normalized via Dii = −1; see Appendix D.

23 The inequality ζ < 2
n−1 is the content of Assumption 1 in the pricing game under the normalization on

demand coefficients. The inequality ζ ≥ 0 is assumed following the normalization of demand coefficients.
These two constraints are not needed without the normalization, and the normalization is used only to ease
the connection between the game F (x0) and the pricing game; for a formal discussion, see Appendix D.
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firm i are

πBi (x) =

âi − xi + ζ
∑
j∈−i

xj

xi.
Each firm chooses a pricing policy pi. The function χ specifies the markup that is

eventually realized from every pricing policy.24 Firm i’s profits from the policy profile p
are given by πBi (χ(p)). Firms choose pricing policies simultaneously in the pricing game,〈
N,
{
EπBi (χ(·)), [p0, p]

}
i∈N

〉
. There exists a unique vector of equilibrium markups in the

pricing game without complexity, which we denote by βB (Lemma 2 and 5.)

Results Complexity leads to less dispersed expected prices across products, by leveraging a
natural ordering property of equilibrium policies. If the net demand intercepts are sufficiently
heterogeneous, then every equilibrium is ordered; which may arise in practice if firms are
sufficiently different in their production efficiency.

Proposition 3. Let p ∈ (p0, p)n be an equilibrium of the pricing game. If p1 < p2 ≤ · · · ≤
pn−1 < pn, then:

Eχ(p1)− Eχ(pn)− (βB1 − βBn ) = −(n− 1) ζ

2 + ζ
k.

Moreover, if âi − âi+1 > 2ζk for all i ∈ {1, . . . , n− 1}, then: every equilibrium p ∈ (p0, p)n is
ordered such that p1 < · · · < pn, and there exists at most one interior equilibrium.

The impact of complexity on conformity of markup policies is increasing in the level of
complexity and in the strategic-complementarity coefficient in ordered equilibria. The more
substitutable products, the greater the impact of complexity on price conformity, measured by
Eχ(pi)− Eχ(pj)− (βBi − βBj ). The reason is that the strength of strategic complementarities
(ζ) increases in product substitutability c.

Discussion The pricing game models quasi-Bertrand competition with differentiated prod-
ucts in which negative quantities and prices are theoretically available, and the consumer’s
income is sufficiently large.25 A reason for the presence of correlated noise in the mapping
from pricing policies to listed prices — or, equivalently, to markups — is that firms buy
pricing services from the same provider.

24 The same structure can be applied to a model in which the outcome of policy pi is a price, and not a
markup, and the findings are qualitatively unchanged. The present section works with markups as outcomes
to ease the connection between the pricing game and the game F0.

25 The probability of negative prices is made arbitrarily small, for sufficiently large status-quo price. The
terminology is inspired by Monderer and Shapley (1996), who refer to quantity competition as quasi-Cournot
competition when negative quantities are possible.
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4 Equilibrium Selection

4.1 Potential Maximizer

I propose an equilibrium selection based on the observation that the game G(x0) is a potential
game (Monderer and Shapley, 1996).

A game is a common-interest game if all players have the same payoff function. A
game is a potential game if it is “best-response equivalent” to an auxiliary game that is a
common-interest game (definitions are in the Appendix.) For a potential game, the common
payoff function in the auxiliary game is called the potential function, which maps strategy
profiles into real numbers.

The potential is the function V : Pn → R given by

V (p) = E
[
2(1− α)δTχ(p)− χ(p)T(I − αΓ)χ(p)|χ(p0) = x0

]
.

I study the maximizers of the potential V . A potential maximizer is a policy profile p? that
maximizes the potential, so

p? ∈ arg max
p∈Pn

V (p).

Proposition 4. The following properties of the potential maximizer hold.

(1) If the policy profile p ∈ Pn is a potential maximizer, then p is an equilibrium.

(2) If P = [p0, p], there exists a unique potential maximizer.

For part (1), I establish von-Neumann-Morgenstern equivalence (Morris and Ui, 2004)
between the two strategic-form games played in the outcome space with utility functions
{π1, π2, . . . , πn} and {v, v, . . . , v}, in which v(x) = 2(1− α)δTx− xT(I − αΓ)x. This result
extends to the induced games played in the policy space, and so it establishes that G(x0)
is a potential game, a fortiori.26 Since a strategy profile that maximizes the potential is
necessarily an equilibrium of the potential game (Radner, 1962), part (1) follows. Moreover,
the potential for G(x0) is uniquely defined up to a constant term.27 These two observations
imply that the potential maximizer provides a valid equilibrium selection for G(x0).

The potential V is not differentiable whenever pi = pj for a pair of players, due to
the covariance structure (see Section 2.3 and A.3.) However, strict concavity on [p0, p]

26 In particular, for every player i ∈ N there exists a function gi : Pn−1 ×R → R such that: Eπi(χ(p)) =
Ev(χ(p)) + gi(p−i, x0) for all p ∈ Pn and x0 ∈ R. The last step of the proof verifies that von-Neumann-
Morgenstern equivalence is consistent with the definition of a potential game.

27 In Appendix C, I establish that V is an exact potential; Monderer and Shapley (1996) introduce the notion of
exact potential, a particular case of the weighted potential; Morris and Ui (2004) study the equivalence between
weighted potential games and potential games in connection with von-Neumann-Morgenstern equivalence.
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leads to existence and uniqueness of the potential maximizer. I study the (well-defined)
superdifferential of V to characterize the potential maximizer.

Proposition 5 (Potential Maximizer). Let P = [p0, p]. The policy profile p ∈ (p0, p)n is a
potential maximizer if, and only if:

Eχ(p) = β + 1k + α(I − αΓ)−1(Γ�A)1k,

for a skew-symmetric matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1] and aij = 1, if
pi > pj.

The decomposition for the potential maximizer has a similar structure as the equilibrium
decomposition. The main difference is the skew-symmetry property of the endogenous matrix
A that implies the uniqueness result.

The uniqueness and characterization of the potential maximizer allow to make predictions
about strategic interactions in complex environments using the potential maximizer as
equilibrium selection. With quadratic ex-post payoffs, the selection is useful precisely due
to complexity. If k > 0, the strictly concave potential is not smooth and there are multiple
equilibria. If k = 0, the strictly concave potential is differentiable everywhere and there
exists a unique equilibrium: the potential maximizer.28 It follows that studying the potential
maximizer is useful to compare G(x0) with the case in which k = 0.

I study the welfare in the game F (x0) using the tools developed for the maximization
of the potential of G(x0). The utilitarian welfare in F (x0) is given by the function W : p 7→∑
i Evi(χ(p)). A welfare maximizer is a policy profile pW that maximizes utilitarian welfare

in F (x0), so

pW ∈ arg max
p∈Pn

W (p).

The following result characterizes the welfare maximizer.

Proposition 6 (Welfare Maximizer). Let P = [p0, p] and 2αλ(Γ) < 1. There exists a unique
welfare maximizer. Moreover, the policy profile p ∈ (p0, p)n is a welfare maximizer if, and
only if:

Eχ(p) = (1− α)B(2αΓ)δ + 1k + 2αB(2αΓ)(Γ�A)1k,

for a matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1], aij = −aji, and aij = 1 if pi > pj.

In the proof, I leverage the known observation that utilitarian welfare maximization
in F (x0) is equivalent to maximization of the potential of an auxiliary game in which the

28 To establish this observation, it suffices that: if p◦ ∈ Pn satisfies ψ(p◦) = β, then it maximizes p 7→ v(ψ(p))
on Pn. This claim is established by showing that p 7→ v(ψ(p)) is a potential for the game G(x0) without
complexity (Appendix).
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magnitude of cost externalities is doubled. The reason is that the game F (x0) is a coordination
game, by the results established for G(x0) (Lemma 1 and 5), in which players do not internalize
all the externality of their policy. This intuition resonates with the results for games played
over networks (Jackson and Zenou, 2015), and allows to use the characterization of the
potential-maximizer equilibrium in Proposition 5.

4.2 Application 2: Network of Players

This section presents a characterization of the potential-maximizer equilibrium for a class
of network games. For sufficiently high complexity, extreme conformity prevails: all players
choose the same policy. The equilibrium behavior is observationally equivalent to the
optimal choice of a single player with a favorite outcome that is characterized under the
potential-maximizer equilibrium selection.

I study the game in which every player is part of only one of two groups, A and B, and
players in the same group have the same favorite outcomes and connections. γ denotes the
connection between a player in group A and a player in B, by δg, γgg, βg and ng, respectively,
the favorite outcome, the weight of an intra-group connection, the centrality of a player and
the number of players for group g ∈ {A,B}.

The two-type network game is the game G(x0) with the restriction described in the above
paragraph. In every equilibrium of a two-type game, player i chooses the same policy as
player j if they are in the same group.29 Hence, an equilibrium is represented by a pair
(pA, pB), such that i ∈ A plays pA, and j ∈ B plays pB. I use αA := αγnB

1−αγAA(nA−1) and
αB := αγnA

1−αγBB(nB−1) . By Assumption 1, αA, αB ∈ [0, 1] and αA+αB−2αAαB
1−αAαB ∈ [0, 1].30

Lemma 6 (Two-Type Network). Let βA ≥ βB and (pA, pB) ∈ (p0, p)2 be the unique potential
maximizer of the two-type network game.

(1) If βA − βB ≥ αA+αB−2αAαB
1−αAαB k, then pA < pB and

Eχ(pA)− Eχ(pB) = βA − βB −
αA + αB − 2αAαB

1− αAαB
k.

(2) If βA − βB ≤ αA+αB−2αAαB
1−αAαB k, then pA = pB and

Eχ(pA) = αB(1− αA)βA + αA(1− αB)βB
αB(1− αA) + αA(1− αB) + k.

The result shows that the strategic-uncertainty effect increases in the number of players.
In particular, Eχ(pA) − Eχ(pB) − (βA − βB) is decreasing in nA and nB. Moreover, for

29 The proof of this result uses the fact that the game G(x0) is a potential game, and that, for given policies
chosen in group g′, the “reduced potential” that includes only members of g is “symmetric”; see, e.g., Vives
(1999), Chapter 2, Footnote 23.

30 These results are established in the Appendix, Section E.
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sufficiently high complexity, conformity is extreme: all players choose the same policy. In this
case, the expected outcome is the same as if a representative player were choosing an optimal
policy, in isolation and with a favorite outcome equal to αB(1−αA)βA+αA(1−αB)βB

αB(1−αA)+αA(1−αB) , which is a
weighted average of centralities in the two groups.

4.3 Application 3: Centralization in Organizations

This section considers a stylized model of an organization in which division managers choose
production processes knowing the produced quantity of alternative choices only up to some
noise.

Model A firm is made of two divisions, each producing a different good. When quantity
produced by division i is xi, the cost of division i is

cixi − gx1x2,

in which the parameter g > 0 measures the degree of cost externalities and ci > 0. An
increase in the quantity produced by one division reduces the marginal costs of the other
division, as in Alonso et al. (2015). The inverse demand function for product i is given by

ai −
1
b
xi,

where b > 0 measures the price elasticity of demand. The profits of division i given the profile
of quantities x are

πOi (x) :=
(
ai −

1
b
xi − ci + gxj

)
xi.

The CEO’s objective is the maximization of total profits πO1 + πO2 . I impose an upper bound
on the strength of cost externalities for the CEO’s profit maximization to be well-behaved:
bg < 1.31

Each division manager chooses a production policy pi ∈ [p0, p]. The function χ specifies
the quantity produced by a division for every production policy. Division i’s profits given the
pair of policies p are given by πOi (χ(p)). The division managers set production policies si-
multaneously and independently in the production game,

〈
{1, 2}, {EπOi (χ(·)), [p0, p]}i∈{1,2}

〉
.

Results I investigate whether managerial incentives are compatible with total-profit maxi-
mization. The rest of the analysis assumes that a1 − c1 = a2 − c2 =: â, which implies that
managers choose the same policy in equilibrium and for total-profit maximization; â is the
net demand intercept for the two goods.32

31 The Hessian of total profits πOi + πOj is negative definite iff: bg < 1.
32 More general results are given in the Appendix, Section E.
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Proposition 7. There exists a unique policy profile pO that maximizes expected total profits.
Moreover, pO is an equilibrium of the production game if and only if:

â
b

1− bg ≤ 2k.

The result gives conditions under which pO is in the equilibrium set. First, I show that
the CEO’s objectives are well-defined by studying the maximization of total profits, which is
equivalent to the maximization of utilitarian welfare in the coordination game between the
division managers. The maximization of expected total profits is solved using the welfare
analysis in Proposition 6 and the equilibrium set is characterized using Proposition 2 and
Lemma 5.

The result associates multi-division firms with weaker cost externalities and operating
in more complex environments with an equilibrium that implements the CEO’s optimal
production policy. A necessary and sufficient condition to for maximization of total profits
to be implemented in equilibrium is that complexity exceeds the threshold â b

2(1−bg) . The
threshold increases in the net demand intercept â and price sensitivity of demand, reflecting
that the interests of division managers move farther apart from the CEO’s interests for
favorable individual market conditions. The threshold also increases in g, because the
“non-internalized” externalities increase in g.

Discussion A reason for the presence of noise in the mapping from production processes
to quantities is frictions in the command chain. Suppose that each division manager only
instructs lower-end division managers about production decisions, who in turn interact with
store managers, and so forth. The division manager is unsure about how her instructions are
communicated along the chain of command and finally implemented. Complexity captures
the noise perceived by the division manager; e.g., the longer the chain, the less predictable
the outcome of the original instruction. To capture that bold decisions are unpredictable, in
the model division managers do not know the shape of the mapping from production policies
to quantities, and there is a status-quo policy leading to a certain quantity. In particular, if a
division manager opts for the status-quo policy, the quantity produced by that division is
known to both managers and CEO. The status quo is common between divisions, which may
arise in practice if the two divisions are just starting to operate separately and have operated
under a centralized authority until now.

5 Heterogeneous Status Quo

This section considers an incomplete-information extension of the game G(x0) introduced in
Section 2.
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5.1 General Model

Ex-Post payoffs are the same as in Section 2.1. The following description of interim beliefs
defines a Bayesian game parametrized by a profile of status-quo policies, G(p0), which is
defined explicitly in the Appendix (Section C).

Player i believes that the outcome function χ is the realized path of a Brownian motion
with drift µ < 0, variance parameter ω > 0 and starting point (pi0, χ(pi0)). Every player knows
the profile of status-quo policies p0 = (p1

0, . . . , p
n
0 ) ∈ Rn. The status-quo outcome of player i

is known to player i and not known to her opponents: χ(pi0) is player i’s type. Beliefs are
consistent with the limit of a common prior over a Brownian motion.33 I denote by Pi the
probability of an event and by Ei the expectation operator induce by player i’s beliefs at a
given type χ(pi0) (see the Appendix, Section A.2, for more details.)

Every player simultaneously chooses a policy. In this section, Pi = [p
i
, pi] is the policy

space of player i, for p
i
, pi ∈ R with p

i
≤ pi0 ≤ pi, and P = ×iPi to ease readability, with a

slight inconsistency of notation with respect to the previous sections. A strategy for player
i is a measurable function σi : R → Pi. The set of strategies for player i is denoted by Σi,
the set of strategy profiles by Σ := ×i∈NΣi, and the set of profiles of strategies for players
other than i by Σ−i = ×i∈−iΣj ; Σi is endowed with the pointwise order to be a lattice, Σ−i
and Σ are endowed with the product order. The following notation is used, given a profile of
strategies of player i’s opponents σ−i:

(χ(pi), χ(σ−i)) = (. . . , χ(σi−1(χ(pi−1
0 ))), χ(pi), χ(σi+1(χ(pi+1

0 ))), . . . ),

The expected payoff of player i, given σ−i, is

Πi(pi, xi0;σ−i) := Ei[πi(χ(pi), χ(σ−i))]

An equilibrium of G(p0) is an interim Bayesian Nash equilibrium; the definition uses
ϕi(xi0;σ−i) := arg maxpi∈Pi Πi(pi, xi0;σ−i).

Definition 3. The strategy profile σ ∈ Σ is an equilibrium of G(p0) if, and only if:

σi(xi0) ∈ ϕi(xi0;σ−i), for all xi0 ∈ R, i ∈ N.

Remark 3. Consider the game G((p0, . . . , p0)), in which players have the same status-quo
policy p0. This game is effectively the collection of strategic-form games {G(x0)}x0∈R, because
the profile of status-quo outcomes is common knowledge. Hence, the game G(x0) is the
subgame of G((p0, . . . , p0)) starting at χ(p0) = x0.

33 Given a Brownian motion with starting point (0, z) and realized path denoted by ξ, suppose that each
player observes the point (pi0, ξ(pi0)) and a signal about z with Gaussian noise that is i.i.d. across players. As
the noise grows, player i’s belief about ξ(q) given ξ(pi0) = xi0 converges to her belief in G(p0) about χ(q) when
her type is χ(pi0) = xi0.
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5.2 Results

The assumption that status-quo policies are different across players is maintained in this
section.

Assumption 2 (Incomplete Information). Status-Quo policies are different across players:
pi0 6= pj0 for all i, j ∈ N with j 6= i.

Player i’s belief about χ(q) is nondecreasing in χ(pi0) in the sense of first-order stochastic
dominance (FOSD) and satisfies a translation-invariance property studied in Mathevet
(2010).34

Lemma 7 (FOSD Monotonicity and Translation Invariance of Beliefs). Player i’s belief
about the outcome of policy q is nondecreasing in χ(pi0) according to first-order stochastic
dominance. Moreover, player i’s belief satisfies the following translation invariance property:

Pi{χ(q) < x|χ(pi0) = xi0} = Pi{χ(q) < x+ ∆|χ(pi0) = xi0 + ∆}, for all ∆ ∈ R.

FOSD monotonicity is used to establish the single-crossing property of expected payoffs
in own policy and type.

A more stringent upper bound on the strength of coordination motives than Assumption
1 is used to establish single-crossing of expected payoffs, which is used for the existence of
equilibria in monotone strategies.

Assumption 3. For every player i,

α
∑
j∈N

γij < 1.

Assumption 3 implies that I − αΓ has strictly dominant diagonal, which is a known
sufficient condition for Assumption 1.

The incomplete-information game G(p0) exhibits strategic complementarities.

Lemma 8 (Single Crossing and Strategic Complementarities). For all i ∈ N , the expected
payoff (p, χ(pi0)) 7→ Eiπi(χ(p)) exhibits strictly increasing differences in pi, pj, j ∈ −i, and in
(pi, χ(pi0)).

The upper bound on coordination motives is key for increasing differences in own policy
and type. To establish this property, the right-derivative of pi 7→ Eiπi(χ(p)) is shown to
be an affine function of xi0, where the coefficient on xi0 is 1 − α

∑
j γ

ij (Appendix). The
upper bound on coordination motives is necessary for the single-crossing property of expected
payoffs in (pi, xi0), which associates higher policies to higher types.

34 For notational convenience, in the following result I use the symbol “|”, even though the beliefs of players
do not necessarily arise as conditional probabilities, because G(p0) is an interim Bayesian game.
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The following result establishes existence of Bayesian Nash equilibrium in nondecreasing
strategies.

Proposition 8. There exist a greatest and a least Bayesian Nash equilibrium, σ and σ,
respectively. Moreover, σ and σ are profiles of nondecreasing strategies.

Because the type spaces are necessarily unbounded, results from the literature on
incomplete-information games with strategic complementarities do not apply directly. How-
ever, I establish that the expected payoff function pi 7→ Πi(pi, xi0;σ−i) is strictly concave for
a profile of nondecreasing strategies σ−i. Given strict concavity of Πi, compactness of Pi and
strategic complementarities, type spaces can be compactified to establish similar results as Van
Zandt and Vives (2007). In particular, the greatest-best-reply mapping xi0 7→ supϕi(xi0, σ−i)
is measurable; see Lemma 21 in Appendix.)

Remark 4. Let α = 0. From the analysis in Callander (2011a) and Corollary 1, it follows
that: (i) there exists a unique Bayesian Nash equilibrium, and (ii) in the unique Bayesian
Nash equilibrium, the strategy of each player is nondecreasing in her type.

The following result shows a status-quo effect.

Lemma 9 (Status-Quo Bias). For every Bayesian Nash equilibrium in nondecreasing strate-
gies σ and player i, the following holds:

There exist cutoffs ci1, ci2 ∈ R with ci1 < ci2 such that: σi(x) = pi0 for all x ∈ [ci1, ci2], and
σi(x) 6= pi0 for all x ∈ R \ [ci1, ci2].

There are two takeaways. First, the reason why the slope of equilibrium strategies is not
constant is the presence of a status quo: if the status-quo outcome of player i is in an interval
[xi1, xi2], player i prefers to stick to the status-quo policy, than to incur the uncertainty implied
by a change of expected outcome. This equilibrium behavior is consistent with the optimal
strategy in the game without coordination motives (Corollary 1).

Secondly, equilibrium strategies do not have a constant slope, differently from general
models of beauty contest under incomplete information. Strategies with constant slope are
either the focus or constitute the unique possibility in equilibrium in standard beauty-contest
models of incomplete information. In Lambert et al. (2018) — where the environment is
“informationally complex” because of the arbitrarily large, though finite, dimensionality of the
state and type profile —, the authors establish the existence of an equilibrium in strategies
with constant slope.

The following result offers a partial characterization of equilibria in nondecreasing strate-
gies, using χj for χ(σj(pj0)), given σj ∈ Σj and j ∈ N .

Lemma 10. Let Pi = [pi0,∞) for all i ∈ N . The profile of nondecreasing strategies σ is an
equilibrium if, and only if, the following condition holds. For all i ∈ N and xi0 ∈ R such that
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σi(xi0) > pi0, there exists a vector [aij : j ∈ N ], such that:

Eiχi − α
∑
j∈N

γijEiχj = βi − α
∑
j∈N

γijβj + k + αk
∑
j∈N

γijaij ,

and aij ∈
[
2Pi{σj(χ(pj0)) < σi(xi0)|χ(pi0) = xi0} − 1, 2Pi{σj(χ(pj0)) ≤ σi(xi0)|χ(pi0) = xi0} − 1

]
.

The next result studies the multiplicity of equilibria, letting d denote the sup-norm
distance between two strategies for player i.35

Proposition 9. The following holds:

max
i∈N

d(σi, σi) ≤ 2kmax
i∈N

α
∑
j γ

ij

1− α
∑
j γ

ij

1
|µ|
.

By Proposition 8, all equilibria lie between two extreme strategy profiles, σ and σ.
Therefore, the distance between player i’s strategies in any two equilibria is at most the
distance between the extremal equilibria, i.e. d(σi, σi), which is upper bounded by the
Proposition.

In the Appendix, I study the game with finite policy spaces. With two players and finite
policy spaces, there exists a unique equilibrium in nondecreasing strategies. The key step of the
proof is the observation that increasing differences — which yield strategic complementarities
in G(x0) and single-crossing in G(p0) — are constant in own type. This “constant-type”
monotonicity, and the translation invariance and FOSD monotonicity properties of beliefs
suffice establish uniqueness by using the results in Mathevet (2010); the author shows that
under “translation-monotone” and FOSD-nondecreasing beliefs, a class of coordination games
admits a unique equilibrium because the best-response mapping to nondecreasing strategies
is a contraction.

6 Conclusion and Discussion

Imperfect Correlation In many strategic interactions, players face distinct decision-
outcome mappings. Firms buy pricing services from different providers, and pricing algorithms
are trained on separate datasets. Similarly, the communication noise may be only partially
correlated across multiple divisions of the same organization. To capture these features in the
case of 2 players, suppose that the outcome function of player 1 is X1 = Y 1, while the outcome
function of player 2 is X2 = ρY 1 +

√
1− ρ2Y 2, for ρ ∈ [0, 1] and a 2-dimensional Brownian

motion (Y 1, Y 2) with common drift µ, variance parameter ω, and independent coordinates.36

35 The sup-norm of a strategy for a player is well-defined because policy spaces are bounded. Moreover, in
the Appendix I establish that (i) equilibrium strategies are continuous and (ii) type spaces can be compactified,
so that the sup can be replaced by the max in d by Weierstrass’ Theorem (Lemmata 19 and 20).

36 See Definition 5.19 in Karatzas and Shreve (1998), Chapter 2.
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The analysis in this paper leads to the following characterization of equilibria.37 A policy
profile p ∈ (p0, p)n is an equilibrium if, and only if:

Eχ(p) = β + (I − αΓ)−1(I + ραΓ�C
)
1k,

for a matrix C such that Cij ∈ [−1, 0], Cij = 0 if pi > pj and Cij = −1 if pi < pj .
This general model allows for a finer decomposition that separates the two elements

of the complexity of the environment: variance of outcomes and covariance of pairs of
outcomes. The new term in the decomposition is a linear combination of two effects. First,
a pure status-quo bias, which arises with independent outcomes across players (i.e., the
positive vector (I − αΓ)−11k, discussed in Section 3.)38 This component pushes every
player towards the status quo, and is magnified by the network of players. Second, a pure
experimentation motive, that arises only with correlated outcomes (i.e., the nonpositive vector
(I − αΓ)−1(ραΓ�C

)
1k.) This component pulls players away from the status quo.

Conclusion In strategic interactions with coordination motives, the willingness to take risk
is endogenous. The reason is the incentive to make decisions with “correlated” consequences —
not just with similar consequences in expectation —, all else equal. Hence, the informational
complexity of an environment influences the risk borne in equilibrium. Do players explore
more as coordination motives increase? Does complexity amplify the network influence that
players are subject to? This paper provides a framework to answer these questions. I show
that the interplay of coordination and complexity manifests itself via a subtle conformity
motive and leader-follower asymmetry. Conformity implies that some players are pulled away
from the status quo while others are pushed towards it. Conformity also interacts with the
network of players and generates a rich array of conformity and counter-formity phenomena.

There are several directions for future research. First, this paper provides a tool for the
characterization of the conformity pattern that emerges in specific networks of innovators,
identified by theoretical and empirical work (König et al., 2014; Zacchia, 2019). Second,
further research is needed to verify whether the rich structure of heterogeneous decision-
outcome mappings helps to explain the conformity observed in experimental settings. Finally,
this paper identifies an endogenous leader-follower relationship in a one-shot interaction.
Similar leaderships arise in several dynamic interactions, from price competition (Brown and
MacKay (2023)) to economic growth. An avenue for future research explores the determinants
of sustained innovation leadership over time.

37 The model considered in this paragraph is constructed as in Section 2, except that p 7→ πi(Xi(pi), Xj(pj))
replaces p 7→ πi(χ(pi), χ(pj)). This construction generalizes forn players via a suitable linear combination of
the coordinates of an n-dimensional standard Brownian motion (Definition 5.1 in Karatzas and Shreve (1998),
Chapter 2); see Exercise 4.16 in Shreve (2004).

38 The vector (I − αΓ)−11k scales the “unweighted” centralities by the degree of complexity.
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A Preliminaries

In this section, we study the properties of payoffs over outcomes defined in Section 2, the outcome
distribution discussed in Section 2.3, and the potential of G(x0). In Section A.2.3, we extend the model
to study a common-prior model. The analysis maintains Assumption 1.

A.1 Ex-Post Payoffs

In this section, we study the ex-post payoff functions. Player i ∈ N = {1, . . . , n} has preferences over
outcome profiles x ∈ Rn that are represented by the payoff ui : Rn → R, which takes a quadratic-loss
form:

πi(xi, x−i) = −

xi − (1− α)δi − α
∑
j∈N

γijxj

2

,

in which δi ∈ R, α ∈ [0, 1), γij ≥ 0, and γii = 0.
We note that: πi(xi, x−i) = 2(1 − α)δixi − x2

i + 2α
∑
j∈N γ

ijxixj + hi(x−i), in which hi(x−i) is
constant with respect to xi. Player i’s effort-game payoff is: vi : Rn → R, with

vi(xi, x−i) = 2(1− α)δixi − x2
i + 2α

∑
j∈N

γijxixj .

We let δ and Γ be, respectively, the column vector of favorite outcomes (δ1, . . . , δn)T and the
interactions matrix [γij : i, j ∈ N ]. We let G := αΓ, Q := I −G, b := (1− α)δ. We define β := Q−1b.
1 and I denote, respectively, a column vector of ones and the n× n identity matrix. For a matrix A,
we let aij be the entry in the ith row and jth column of A, and ai• be the column vector corresponding
to the ith row of A.

We let x be the column vector given by the outcome profile (x1, . . . xn). We define the potential
v : Rn → R, such that

v(x) = 2(1− α)δTx− xT(I − αΓ)x.

We note that: v(x) = −(x− β)TQ(x− β) + βTQβ. The effort-game utilitarian welfare is
∑
i∈N vi, so

that ∑
i∈N

vi(x) = 2(1− α)δTx− xT(I − 2αΓ)x.

The following Lemma states that player i’s payoff is best-response equivalent to the effort-game payoff and
to the potential. In particular, we show that the three strategic-form games (N, (πi,R)i∈N ), (N, (vi,R)i∈N )
and (N, (v,R)i∈N ) are von Neumann–Morgenstern equivalent (Morris and Ui, 2004). We adopt the
following notational conventions: x denotes (xi, x−i), and −i := N \ {i}, for all i ∈ N .

Lemma 11 (VNM Equivalence). For all i ∈ N , there exist hi, gi : Rn−1 → R such that:

ui(x)− vi(x) = hi(x−i) and ui(x)− v(x) = gi(x−i) for all x ∈ Rn.

Proof. The second result is a consequence of symmetry of Γ. In particular, we note that:
∑

(i,j)∈N2 γijxixj−
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2
∑
j∈N γ

ijxixj is constant with respect to xi, and:

πi(x)− vi(x) = −

(1− α)δi + α
∑
j∈N

γijxj

2

,

v(x)− vi(x) =
∑
j∈−i

(
2(1− α)δjxj − x2

j

)
+ α

∑
(i,j)∈N2

γijxixj − 2α
∑
j∈N

γijxixj .

�

A.2 Interim Beliefs

In this section, we study player i’s beliefs in the game G(p0), given pi0 6= pj0, for all i, j ∈ N with i 6= j.
Every player knows the profile of status-quo policies (p1

0, . . . , p
n
0 ) ∈ Rn. Player i privately knows

the outcome corresponding to her own status quo policy: χ(pi0). Player i believes that the outcome
function χ : R → R is the realized path of a Brownian motion with drift µ < 0, variance parameter
ω > 0 and starting point (pi0, χ(pi0)). This belief structure is consistent with a common prior that is
studied in section A.2.3

A.2.1 Expectation and Covariance

We define Ei,Vi,Ci as, respectively, the conditional expectation, variance and covariance operators given
knowledge of χ(pi0).

Lemma 12 (Interim expectation, variance, and covariance). The following formulas hold. For all
policies p, q ∈ R we have:

Eiχ(p) := E
[
χ(p) | χ(pi0)

]
= χ(pi0) + µ(p− pi0),

Viχ(p) := Var
[
χ(p) | χ(pi0)

]
= |p− pi0|ω,

Ci(χ(p), χ(q)) := Cov
[
χ(p), χ(q) | χ(pi0)

]
=

min{Viχ(p),Viχ(q)} if sgn(p− pi0) = sgn(q − pi0),
0 if p > pi0 > q or q > pi0 > p.

Proof. The formulas for the expectation and the variance operators are known in the experimentation
literature (Callander, 2011a). Let’s show that the covariance formula is a consequence of the Markov
property of beliefs. By the law of iterated expectations:

Ci(χ(p), χ(q)) =E
[
χ(p)E

[
χ(q) | χ(p), χ(pi0)

]
| χ(pi0)

]
− Eiχ(p)E

[
E
[
χ(q) | χ(p), χ(pi0)

]
| χ(pi0)

]
.

Moreover, if q ≥ p ≥ pi0, then: E
[
χ(q) | χ(p), χ(pi0)

]
= E[χ(q) | χ(p)], by the Markov property, so the
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covariance expression simplifies to

Ci(χ(p), χ(q)) =E
[
χ(p)E[χ(q) | χ(p)] | χ(pi0)

]
− Eiχ(p)E

[
E[χ(q) | χ(p)] | χ(pi0)

]
=E
[
χ(p)(χ(p) + µ(q − p)) | χ(pi0)

]
− Eiχ(p)E

[
χ(p) + µ(q − p) | χ(pi0)

]
=Viχ(p),

in which the second equality uses E[χ(q) | χ(p)] = χ(p) + µ(q − p). Instead, if q > pi0 > p, then:
E
[
χ(q) | χ(p), χ(pi0)

]
= E

[
χ(q) | χ(pi0)

]
, by the Markov property, so the covariance expression simplifies

to

Ci(χ(p), χ(q)) = E
[
χ(p)E

[
χ(q) | χ(pi0)

]
| χ(pi0)

]
− Eiχ(p)E

[
χ(q) | χ(pi0)

]
= 0.

Thus, the covariance formula holds. �

The Brownian motion structure implies that the conditional distribution of χ(p) and χ(q) given χ(pi0)
is jointly Gaussian, for all p, q ∈ R \ {pi0}. The CDF of χ(q) | χ(pi0) is denoted by F (·, q|χ(pi0), pi0). The
next result states that beliefs are monotone in status-quo outcome and admit an invariance property.

Proof of Lemma 7

Lemma 13 (FOSD and Translation Invariance of beliefs.). For all y, y′ ∈ R such that y ≥ y′, we have:

F (·, q|y, pi0) ≤ F (·, q|y′, pi0) pointwise for all q, pi0 ∈ R,

moreover: F (x+ ∆, q|y + ∆, pi0) = F (·, q|y′, pi0) for all ∆, x, y, q, pi0 ∈ R.

Proof. Letting Φ be the CDF of a standard Gaussian random variable, we observe that F (x′, q|y′, pi0) =
Φ
(
x′−y′−µ(q−pi0)√

|q−pi0|ω

)
. �

A.2.2 Derivatives of Variance and Covariance terms

We define the left and right derivatives of Viχ(p) and Ci(χ(p), χ(q)) with respect to p, using Iverson
brackets ([Y ] = 1 if Y is true, and [Y ] = 0 otherwise). First, let’s observe that:

Ci(χ(p), χ(q)) =



(
q − pi0

)
+ω if q < p and p ≥ pi0,

(p− pi0)ω if p ≤ q and p ≥ pi0,(
pi0 − p

)
ω if q < p and p < pi0,(

pi0 − q
)

+ω if p < q and p < pi0,
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from which it follows that:

∂−Viχ(p) =

−ω p ≤ pi0,
ω p > pi0,

∂+Viχ(p) =

−ω p < pi0,

ω p ≥ pi0,

∂−Ci(χ(p), χ(q)) =

[p ≤ q]ω p > pi0,

−[p > q]ω p ≤ pi0,
∂+Ci(χ(p), χ(q)) =

[p < q]ω p ≥ pi0,
−[p ≥ q]ω p < pi0.

In particular, we have that:

∂Ci(χ(p), χ(q)) =

∂p(min{p, q} − pi0)ω if p ≥ pi0,
−∂p(max{p, q} − pi0)ω if p < pi0.

=


(

1
2 −

1
2∂p|p− q|

)
ω if p ≥ pi0,(

−1
2 −

1
2∂p|p− q|

)
ω if p < pi0.

= 1
2
(
1− 2[p < pi0]− ∂p|p− q|

)
ω

∂Viχ(p) = 1− 2[p < pi0]

Lemma 14 (Concavity of VCV). The function pi 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0] is
convex on R for all i ∈ N and p?0 ∈ R, and

gi(pi, p−i) := ∂+pi
∑

(i,j)∈N2

qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij∂+pi |pi − pj |

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij([pi ≥ pj ]− [pi < pj ]),

and gi(pi, ·) is nonincreasing on Rn−1. Moreover, the function p 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) |
χ(p?0) = x?0]n is convex on [p?0, p]n.

Proof. First, we show that the function f : pi 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0] is convex.
By definition of Q, we have that:

f(pi) =
∑
i∈N

Var[χ(pi) | χ(p?0) = x?0]−
∑

(i,j)∈N2

gij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]

Thus, for all i ∈ N , assuming ω = 1 without loss of generality, we have:

∂+pif(pi) = 1− 2[pi < pi0]− α
∑
j∈N

gij(−∂+pi |pi − pj | − 2[pi < pi0])− α
∑
j∈N

gij

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij∂+pi |pi − pj |.

Thus, ∂+pif is a nondecreasing function and sof is convex on R (Rockafellar, 1970).
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Let’s show the second part of the lemma. Let’s observe that:

p ∈ [p?0, p]n =⇒ f(pi) =
∑

(i,j)∈N2

qij min{pi − p?0, pj − p?0}ω.

Joint convexity follows. �

A.2.3 Common Prior

In this section, we define a common prior over the outcome function, parametrized by the amount
of noise about the initial value of the Brownian motion. As the noise grows unboundedly large, the
interim beliefs converge to the beliefs of the heterogeneous status quo game introduced in Section 5 and
analyzed in Section B.

Timeline Let’s describe a timeline of a game. Every player knows the profile of status-quo policies
(p1

0, . . . , p
n
0 ) ∈ Rn.

(1) Nature draws the initial value X(0) from a normal distribution with mean 0 and variance σ2
0 ≥ 0.

(2) Nature draws the outcome function X : R → R from a Brownian motion with drift µ < 0, variance
parameter ω > 0 and starting point (0, X(0)).

(3) Player i privately observes the realization of signal Si about X(0) and the outcome corresponding
to her own status quo policy: X(pi0).

After (3), players update their beliefs using Bayes’ rule, and then simultaneously choose real-valued
policies. i’s payoff from the policy profile p is ui(X(p1), . . . , X(pn)). We assume that Si = X(0) + σεi,
for σ ≥ 0 and a standard Gaussian random variable εi, and that for all pairs of players i 6= k, εi is
independent from εk and from X(0). To ease on notation, we assume that ω = 1. In the limit as
σ0 →∞ and σ →∞, Bayes’ rule for jointly Gaussian random variables gives us

E[X(0) | I]→ X(pi0),
Var[X(0) | I]→ pi0.

To verify the second formula, let’s observe that X(pi0) − µpi0 is an unbiased signal about X(0), with
precision 1/pi0. In particular, for a Wiener process W (·), we have that:

X(pi0)− µpi0 = X(0) + ω(W (pi0)−W (0)),

and W (pi0)−W (0) is Gaussian, centered at 0, with variance pi0. W (pi0)−W (0) is independent of X(0)
and (εi)i∈N by our hypotheses.

Interim beliefs The information structure is parametrized by (σ0, σ). In this section, we derive
interim beliefs as a function of (σ0, σ) and study the behavior as (σ0, σ)→ (∞,∞). Beliefs are described
by Gaussian random variables, thus we study the expectation, variance and covariance terms of the
outcomes X(p), X(q) given the realization of (Si, X(pi0)) = I, for (p, q) ∈ R2, with q ≤ p. We claim that
E[X(p) | I]→ E

[
X(p) | X(pi0)

]
and Cov[X(p), X(q) | I]→ Cov

[
X(p), X(q) | X(pi0)

]
for all (p, q) ∈ R2.

Case 1: 0 ≤ pi0 ≤ q. By the Markov property: E[X(p) | I] = E
[
X(p) | X(pi0)

]
, E[X(q) | I] =

E
[
X(q) | X(pi0)

]
, and Cov[X(p), X(q) | I] = Cov

[
X(p), X(q) | X(pi0)

]
.

39



Case 2: 0 ≤ q ≤ pi0 ≤ p. By the Brownian bridge properties, E[X(q) | I] = E
[
X(q) | X(pi0)

]
, using

E[X(0) | I] = X(pi0). By the Markov property: E[X(p) | I] = E
[
X(p) | X(pi0)

]
. By the law of iterated

covariance:

Cov[X(p), X(q) | I] = E[Cov[X(p), X(q) | X(0), I]|I]
+ Cov[E[X(p) | X(0), I],E[X(q) | X(0), I] | I],

By the Markov property, both terms on the right-hand side are 0.
Case 3: 0 ≤ q ≤ p ≤ pi0. By the Brownian bridge properties, E[X(q) | I]→ E

[
X(q) | X(pi0)

]
, using

the formula for E[X(0) | I]. Similarly, we obtain that E[X(p) | I] → E
[
X(p) | X(pi0)

]
. Towards using

the law of iterated covariance, we observe that, by the Brownian bridge properties

Cov
[
X(p), X(q) | X(pi0), X(0)

]
= (pi0 − p)q

pi0
.

Moreover, for a, b, c, d given by the Brownian bridge properties

Cov
[
E
[
X(p) | X(0), X(pi0)

]
,E
[
X(q) | X(0), X(pi0)

]
| X(pi0), Si

]
=

Cov
[
aX(0) + bX(pi0), cX(0) + dX(pi0) | X(pi0), Si

]
,

from which it follows that:

Cov
[
E
[
X(p) | X(0), X(pi0)

]
,E
[
X(q) | X(0), X(pi0)

]
| X(pi0), Si

]
= abVar[X(0) | I].

By the Brownian bridge properties ab = pi0−p
pi0

pi0−q
pi0

. Using the law of iterated covariance and the formula
for Var[X(0) | I], we observe that

Cov[X(p), X(q) | I]→ (pi0 − p)q
pi0

+ pi0 − p
pi0

(pi0 − q)

→ pi0 − p.

The remaining cases are dealt with similarly.

A.3 Potential

For a profile of policies p ∈ P , we denote the corresponding column vector of outcomes as χ(p), or χ if
the policy profile is unambiguous. In this section, we study the following function:

V (·, x0) : P → R
p 7→ E{v(χ(p))|χ(p0) = x0},

under the assumption that Pi = [p0, p] for all i ∈ N , for given p0, x0 ∈ R.

Definition 4. Let x0 ∈ R. An element of arg maxp∈[p0,p]n V (p, x0) is called the potential maximizer
given x0.

It will be useful to study f(p, x0) = −V (p, x0), and also to omit the dependence on x0 when it leads
to no confusion. Moreover, we let Eχ(p) = E[χ(p)|χ(p0) = x0].
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Lemma 15. f : p→ −V (p, x0) is a strictly convex function on Rn, and

f(p) = (Eχ(p)− β)TQ(Eχ(p)− β) + ωpTQ1 + ω
∑

(i,j)∈N2

gij
|pi − pj |

2 − βTQβ.

Proof. First, we observe that v is a quadratic function of the outcome profile. So, we have the next
chain of equalities:

V (p) = −(Eχ(p)− β)TQ(Eχ(p)− β)−
∑

(i,j)∈N2

qij(min{pi, pj} − p0)ω + βTQβ

= −(Eχ(p)− β)TQ(Eχ(p)− β)−
∑

(i,j)∈N2

qij(pi/2 + pj/2)ω+

+
∑

(i,j)∈N2

qij |pi − pj |ω/2 + βTQβ

= −(Eχ(p)− β)TQ(Eχ(p)− β)+

+
∑
i∈N

(1− gT
i•1)piω −

∑
(i,j)∈N2

gij |pi − pj |ω/2 + βTQβ.

The second equality expresses min{pi, pj} = pi+pj−|pi−pj |
2 , and the third uses the definition of Q. �

Towards finding the potential maximizer, we find the subdifferential of f , and ∂ denotes the
subdifferential operator with respect to the vector of policies p. By the above Lemma, we have that:

∂f(p) = 2µQ(Eχ(p)− β) +Q1ω + ω

2 ∂
∑

(i,j)∈N2

gij |pi − pj |

∂f(p)
2µ = Q(Eχ(p)− β − 1k)− k

2∂
∑

(i,j)∈N2

gij |pi − pj |.

The subdifferential of f is

∂f(p) =
{
y ∈ Rn : y

2µ = Q(Eχ(p)− β − 1k)− (G�A)1k, for some A such that

aij = −aji, pi > pj =⇒ aij = 1, pi = pj =⇒ aij ∈ [−1, 1]
}
.

Let 0 be a column of zeroes and IS : Rn → R be the characteristic function of S ⊆ Rn. By strict
convexity of f and convexity of P , standard results in convex analysis (Rockafellar, 1970) imply that
the potential maximizer is the unique p ∈ P such that:

0 ∈ ∂f(p) + ∂IP (p).

Lemma 16. There exists a unique potential maximizer given x0 ∈ R. Moreover, p ∈ (p0, p)n is the
unique potential maximizer given x0 ∈ R if, and only if:

Eχ(p) = β + 1k + (I −G)−1(G�A)1k,
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for some skew-symmetric A = [aij : i, j ∈ N ] such that:

aij = 1 if pi > pj, and aij ∈ [−1, 1] if pi = pj , for all i, j ∈ N.

Proof. For interior p, it is necessary and sufficient that 0 ∈ ∂f(p). The result follows from the preceding
derivation. �

B Proofs for Section 5

B.1 General Model

In this section, we study the heterogeneous-status-quo game. We formulate it as a Bayesian game and
study its Bayesian Nash equilibria. The definition of the Bayesian game and of Bayesian Nash equilibria
are in terms of interim beliefs, and follow closely the respective definitions in Van Zandt and Vives
(2007). The following definitions depend on a vector of status-quo policies p0 such that: pi0 6= pj0, for all
players i, j with i 6= j. Thus, the heterogeneous status-quo game given p0 is G(p0). In this section, we
maintain Assumption 3.

Components of the game

(1) The set of players is N .

(2) The type space of player i is (R,B), in which B is the Borel sigma-algebra; the typical type of
player i is denoted by xi0.

(3) Player i’s type-dependent beliefs are represented by an n − 1-dimensional Gaussian random
vector (χ(pj0))j∈−i with expectation and variance-covariance that are functions of i’s type. Let
j, k ∈ N \ {i}, and xi0 be i’s type, then: the expectation and variance-covariance of (χ(pj0))j∈−i
are given, respectively, by E

[
χ(pj0) | χ(pi0) = xi0

]
and Cov

[
χ(pj0), χ(pk0) | χ(pi0) = xi0

]
, which are

defined in Section A.2. Let fi(·|xi0) : Rn−1 → R be the PDF of the Gaussian random vector
(χ(pj0))j∈−i with mean and variance-covariance as above. We note that fi is well-defined because
pi0 6= pj0, for all players i, j with i 6= j. Thus, player i’s type-dependent belief is such that: for
every measurable A ⊆ Rn−1 and type xi0 ∈ R, we have the following formula for the probability
of A:

P((χ(pj0))j∈−i ∈ A|xi0) =
∫
A
f(x−i0 |x

i
0) dx−i0 .

In particular, let’s define pi(xi0) as the probability measure on Rn−1 induced by the set-valued
mapping A 7→

∫
A f(x−i0 |xi0) dx−i0 . The function xi0 7→ pi(xi0) gives player i’s interim beliefs.

(4) The action set of player i is Pi = [p
i
, pi], for pi < pi, and p

i
, pi ∈ R; we let P := ×i∈NPi and

P−i := ×j∈−iPj .

(5) The payoff of player i is ui : P ×R → R, such that:

ui(p, xi0) = E
[
πi(χ(p1), . . . χ(pn)) | χ(pi0) = xi0

]
.

42



Properties of the components of the game In this section, the superdifferential operator ∂ refers
to differentiation with respect to i’s policy pi.

Lemma 17 (Best-Response Equivalence). For all i ∈ N , there exist hi, gi : P−i ×R → R such that,
letting χ = (χ(p1), . . . , χ(pn)):

E
[
πi(χ) | χ(pi0) = xi0

]
− E

[
vi(χ) | χ(pi0) = xi0

]
= hi(p−i, xi0)

and E
[
πi(χ) | χ(pi0) = xi0

]
− E

[
v(χ) | χ(pi0) = xi0

]
= gi(p−i, xi0) for all p ∈ P, xi0 ∈ R.

Proof. Follows from VNM Equivalence established in Lemma 11. �

Proof of Lemma 8

Lemma 18 (Lemma 8). The function ui(·, xi0) exhibits strictly increasing differences in (pi, p−i) for all
xi0 ∈ R, and the function ui((·, p−i), ·) exhibits strictly increasing differences in (pi, xi0) for all p−i ∈ P−i.
Moreover, ui((·, p−i), xi0) is strictly concave.

Proof. First, we establish strict concavity of ui((·, p−i), xi0). For a profile of policies of i’s opponents p−i
and xi0 ∈ R, we study the function

p 7→ −(xi01 + µ(p− pi01)− β)TQ(xi01 + µ(p− pi01)− β)

−
∑

(i,j)∈N2

qij Cov[χ(pi), χ(pj) | χ(pi0) = xi0]

First, we observe that p 7→ −(xi01 + µ(p− pi01)− β)TQ(xi01 + µ(p− pi01)− β) is strictly concave on
Rn because Q is positive definite. Strict concavity follows from previous results and Best-Response
Equivalence.

Let’s establish strictly increasing differences in (pi, xi0). By absolute continuity of the concave
function ui((·, p−i), xi0):

ui((ri, p−i), xi0)− ui((qi, p−i), xi0) =
∫ ri

qi

∂−ui((pi, p−i), xi0) dpi.

By the formulas from Lemma 14

∂−ui(pi, p−i, xi0) = −2µqT
i•(E[χ | χ(pi0) = xi0]− β)

−qT
i•1ω + 2qT

i•1[pi < pi0]ω − α
∑
j∈N

gij∂−pi |pi − pj |ω.

We observe that: (i) monotonicity of F (·, pj ; ti, pi0) in i’s own type (Lemma 13) and (ii) strict diagonal
dominance of Q jointly imply that ∂−ui(pi, p−i, xi0) is strictly increasing in xi0, thus the function
ui((·, p−i), ·) has strictly increasing differences in (pi, xi0) for all p−i ∈ P−i.

Similarly, we establish that the function ui(·, xi0) has strictly increasing differences in (pi, p−i) for all
xi0 ∈ R by monotonicity of ∂−ui(pi, p−i, xi0) with respect to p−i, established in Lemma 14. �

Given the strategic complementarities established in Lemma 18, we draw on the toolset developed
by the literature on incomplete-information games with complementarities to show that a greatest and a
least equilibria exist and are in monotone strategies. Since payoffs in G(p0) are not necessarily bounded,
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we leverage strict concavity of expected payoffs in own action and compactness of action spaces to
establish similar results to (Van Zandt and Vives, 2007).

Remark 1. Let’s observe that: “Assumption 1.”, “Assumption 2.”, “Assumption 3.”, “Part (1) of
Assumption 4.”, and “Part (2) of Assumption 4.” from Van Zandt and Vives (2007) hold. Assumption 1.
holds because we endow the type space of player i, R, with the usual order. Assumption 2. holds because
Pi is a compact interval of the real line, and we endow Pi with the usual metric, so Pi is a lattice. Let’s
show that Assumption 3. holds by verifying that xi0 →

∫
A f(x−i0 |xi0) dx−i0 is measurable. Measurability

holds because f is a well-defined and a continuous real-valued function of xi0 on R. In particular, xi0
enters f only through the expected value of (χ(pj0))j∈−i. ui(p, ·) is a real-valued continuous function on
R for all p ∈ P , and ui(·, xi0) defines a real-valued continuous function on Rn by concavity of ui(·, xi0);
thus, parts (1) and (2) of Assumption 4. hold.

Strategies and equilibrium A strategy for player i is a measurable function σi : R → Pi. Let Σi

denote the set of strategies for player i. Let Σ := ×i∈NΣi denote the set of strategy profiles, and let
Σ−i = ×i∈−iΣj denote the set of profiles of strategies for players other than i. Σi is endowed with the
pointwise order to be a lattice, Σ−i and Σ are endowed with the product order and ≤ denotes every
partial order

We use the following shorthand notation given a profile of strategies of i’s opponents σ−i =
(. . . , σi−1, σi+1, . . . ):

χ−i = χ(σ−i) = (. . . , χ(σi−1(χ(pi−1
0 ))), χ(σi+1(χ(pi+1

0 ))), . . . )
(χi, χ−i) = (χ(pi), χ(σ−i)) = (. . . , χ(σi−1(χ(pi−1

0 ))), χ(pi), χ(σi+1(χ(pi+1
0 ))), . . . ),

and χ is the column vector of outcomes corresponding to (χi, χ−i).
The expected payoff of player i, given σ−i, is

Ui(pi, xi0;σ−i) := E{ui(χ(pi), χ(σ−i))|χ(pi0) = xi0}, xi0, pi ∈ R.

We use Ui(pi, xi0;σ−i,p0) when the particular status-quo policy profile is important; we note that
Ui(pi, xi0;σ−i,p0) depends on pj0 through F (·, pj0;xi0, pi0) if j 6= i. Let ϕi(xi0;σ−i) be the set of policies
that maximize Ui(pi, xi0;σ−i),

ϕi(xi0;σ−i) := arg max
pi∈Pi

Ui(pi, xi0;σ−i).

Then, we have that σ ∈ Σ is a Bayesian Nash equilibrium if, and only if:

σi(xi0) ∈ ϕi(xi0;σ−i), for all xi0 ∈ R, i ∈ N.

Let βi : Σ−i → Σi denote player i’s best-response correspondence

βi(σ−i) := {σi ∈ Σi : σi(xi0) ∈ ϕi(xi0;σ−i) for all xi0 ∈ R}.

Lemma 19. The expected payoff to player i is, up to a term that is constant with respect to i’s policy

44



pi:

Ui(pi, xi0;σ−i) =− (E[χ | χ(pi0) = xi0]− β)TQ(E[χ | χ(pi0) = xi0]− β)
− V[χ(pi) | χ(pi0) = xi0]

− 2
∑
j∈−i

qij
∫
xj0∈R

Cov[χ(pi), χ(sj(xj0)) | χ(pi0) = xi0] dF (xj0, p
j
0;xi0, pi0).

Moreover:

(1) Ui(pi, xi0;σ−i) is strictly concave in pi.

(2) Ui(pi, xi0;σ−i) exhibits strictly increasing differences in (pi, xi0) if σ−i is a profile of nondecreasing
strategies.

Proof. First, we establish strict concavity using a result in Radner (1962) (“Lemma”, p. 863) and
Lemma 18.

Let’s establish strictly increasing differences in (pi, xi0). By absolute continuity of the concave
function Ui(·, xi0;σ−i), we have

Ui(ri, xi0;σ−i)− Ui(qi, xi0;σ−i) =
∫ ri

qi

∂−Ui(pi, xi0;σ−i) dpi.

We inspect monotonicity of ∂−Ui(pi, xi0;σ−i) with respect to ti, using the formulas in Lemma 18 and
Lemma 14. Our proof is complete given: (i) monotonicity of F (·, pj0;xi0, pi0) in the sense of FOSD with
respect to xi0 (Lemma 13), and (ii) strict diagonal dominance of Q. �

Remark 2. Item (2) in Lemma 19 implies that the Single Crossing Condition for games of incomplete
information (Athey, 2001) is satisfied in G(p0). The reason is that strictly increasing differences imply
the Milgrom-Shannon single-crossing property of incremental returns.

The following result restricts the type spaces to compact sets.

Lemma 20 (Compact type spaces). For all i, there exist types xi0, xi0 ∈ R, such that:

xi0 > xi0 =⇒ ϕi(xi0, σ−i) = {pi}, for all σ−i ∈ Σ−i
and xi0 < xi0 =⇒ ϕi(xi0, σ−i) = {p

i
}, for all σ−i ∈ Σ−i.

Proof. We establish the first claim. Let σ−i be the least element in Σ−i, which is given by a profile of
constant functions. Let xi0 be such that: pi ∈ ϕi(xi0, σ−i). xi0 is well-defined by an application of Topkis’
Theorem, because (i) ϕi(·, σ−i) is nonempty-valued and continuous correspondence (by strict concavity
of Ui(pi, xi0;σ−i) as a function of pi and Berge’s Theorem, respectively), and (ii) Ui(pi, xi0;σ−i) exhibits
strictly increasing differences in pi, xi0 on Pi×R. Ui(pi, xi0;σ−i) exhibits increasing differences in (pi, xi0)
(Lemma 19), thus xi0 > xi0 =⇒ ϕi(xi0, σ−i) = {pi}. The first follows because Ui(pi, xi0;σ−i) exhibits
increasing differences in (pi, σ−i). The second claim is established analogously. �

Lemma 21 (Measurability of GBR). The mapping xi0 → supϕi(xi0;σ−i) is measurable.

Proof. By strict concavity of Ui(·, xi0;σ−i), its maximizer on Pi exists and is unique, so supϕi(xi0;σ−i) =
ϕi(xi0;σ−i). Ui(pi, ·;σ−i) is continuous, so by Berge’s maximum theorem the unique selection from
ϕi(·;σ−i) is a real-valued continuous function on R. The claim follows from Corollary 4.26 in Aliprantis
and Border (2006). �
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Remark 3. Lemma 21 admits a different proof that is similar to the apprach taken by Van Zandt and
Vives (2007). Let’s observe that Ui(pi, ·;σ−i) is a continuous real-valued function on R by Lemma 19.
Let’s observe that Ui(·;σ−i) is continuous in i’s own policy, and measurable in i’s own type. Thus,
Ui(·;σ−i) is a Carathéodory function. Therefore, the Measurable Maximum Theorem (Aliprantis and
Border (2006), Theorem 18.19) holds.

If σi is a nondecreasing function, by Lemma 20 its generalized inverse σ−1
i is well-defined:

σ−1
i (pi) = inf

{
xi0 ∈ R : pi ≤ σi(xi0)

}
, pi ∈ Pi.

Moreover, if σi is nondecreasing, σ−1
i is nondecreasing, left-continuous and admits a limit from the right

at each point given Lemma 20. We define σ−i to be the generalized inverse of σi extended by continuity
to be a correspondence:

σ−i : Pi ⇒ R
pi 7→ [σ−1

i (pi), lim
p′i→p

+
i

σ−1
i (p′i)] =: [σ−i1(pi), σ−i2(pi)].

Proof of Lemma 9 The result is a consequence of the following Lemma.

Lemma 22. If σ is a Bayesian Nash equilibrium, the left and right derivatives of Ui(pi, xi0;σ−i) with
respect to pi and evaluated at pi = σi(xi0) are, respectively:

∂−Ui(pi, xi0;σ−i) =


−2µqT

i•(E[χ | χ(pi0) = xi0]− β)− qT
i•1ω−∑

j gij [2F (σ−1
j1 (pi), pj0;xi0, pi0)− 1]ω if pi > pi0,

−2µqT
i•(E[χ | χ(pi0) = xi0]− β) + qT

i•1ω−∑
j∈−i gij [2F (σ−1

j1 (pi), pj0;xi0, pi0)− 1]ω if pi ≤ pi0,

∂+Ui(pi, xi0;σ−i) =


−2µqT

i•(E[χ | χ(pi0) = xi0]− β)− qT
i•1ω−∑

j gij [2F (σ−1
j2 (pi), pj0;xi0, pi0)− 1]ω if pi ≥ pi0,

−2µqT
i•(E[χ | χ(pi0) = xi0]− β) + qT

i•1ω−∑
j gij [2F (σ−1

j2 (pi), pj0;xi0, pi0)− 1]ω if pi < pi0.

Proof. The result follows from Lemma 19 and the expression for the covariance in Section A.2.2. �

Lemma 23. Let σ−i be a profile of nondecreasing strategies of i’s opponents. Then: ϕi(·;σ−i) is
nonempty-valued, uniquely-valued, continuous and nondecreasing in the strong set order.

Proof. ϕi(·; s−i) is nonempty-valued, uniquely-valued and continuous by Berge’s Theorem, since: (i) Pi
is nonempty and compact, and (ii) Ui(·, xi0;σ−i) is strictly concave (Lemma 19), and Ui(pi, xi0;σ−i) is a
continuous function of x0 (Lemma 19, noting that Ui(pi, x0; s−i) is a strictly concave function of x0).

ϕi(·;σ−i) is nondecreasing by Topkis’ Theorem (Topkis (1978), Theorem 6.3), because Ui(pi, xi0;σ−i)
exhibits strictly increasing differences in (pi, xi0) (Lemma 19). �

Lemma 24. The strategy profile of nondecreasing strategies σ is a Bayesian Nash equilibrium if, and
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only if, the following conditions are satisfied for all i ∈ N , xi0 ∈ R.

k
∑
j∈N

gij [2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β − 1k)

≥ k
∑
j∈N

gij [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) > pi0,

k
∑
j∈N

gij [2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β + 1k)

≥ k
∑
j∈N

gij [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) < pi0,

kqT
i•1 + k

∑
j∈N

gij [2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β)

≥ −kqT
i•1 + k

∑
j∈N

gij [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) = pi0.

Proof of Lemma 10

Proof. The result is a consequence of the above Lemma. Assuming p
i

= pi0, the strategy profile of
nondecreasing strategies σ is a Bayesian Nash equilibrium if, and only if, the following condition is
satisfied. For all i ∈ N and xi0 ∈ R such that σi(xi0) > pi0, there exists a matrix A = [aij ], such that:

E[χ | χ(pi0) = xi0] = β + 1k +Q−1G�A1k,

and aij ∈ [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1, 2F (σ−1

j2 (σi(xi0)), pj0;xi0, pi0)− 1]. �

Existence of Bayesian Nash equilibria

Lemma 25 (Properties of GBR mapping). The following hold.

(1) βi(σ−i) has a greatest element, which we call βi(σ−i), for all σ−i ∈ Σ−i.

(2) For σ′−i, σ−i ∈ Σ−i such that σ′−i ≥ σ−i, we have that βi(σ′−i) ≥ βi(σ−i).

(3) If the strategies in σ−i are nondecreasing, then the unique strategy given by βi(σ−i) is nondecreasing
(in i’s type).

Proof. Ui(pi, xi0;σ−i) is continuous as a function of pi and has increasing differences in pi, σ−i because
increasing differences are preserved by integration. Thus, by “Lemma 7” in Van Zandt and Vives (2007),
ϕi(xi0;σ−i) is a nonempty complete lattice, and (2) holds.

(3) is established in Lemma 23.
(1) is a consequence of Lemma 21. �

Proof of Proposition 8

Lemma 26 (Proposition 8). There exist a greatest and a least Bayesian Nash equilibrium, and they
are in nondecreasing strategies.

Proof. ui(·, xi0) is a continuous real-valued function on the compact set P , so ui(·, xi0) is bounded. Given
Lemma 25, the proof follows from the same argument as that of “Lemma 6” in Van Zandt and Vives
(2007). �
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Proof of Proposition 9 The result is a consequence of the following result, which upper bounds the
distance between two equilibrium strategies of any player, in the sense of the sup norm.

Lemma 27. If σi(xi0)− σi(xi0) > c, for i ∈ N, xi0 ∈ R, c > 0, then:

ω > µ2 1
α
∑

j
gij

1−α
∑

j
gij

c

Equivalently, if ω ≤ v, then: maxi∈N |σi − σi| ≤ v
α
∑

j
gij

1−α
∑

j
gij
/(µ2).

Proof. Let σ, σ ∈ Σ be, respectively, the greatest and least Bayesian Nash equilibria, and suppose that
they are distinct elements of Σ. Let’s take i ∈ N be such that: i ∈ arg maxi′∈N max

xi
′

0 ∈R σi′(xi
′

0 )−σi′(xi
′

0 ).
First, we verify that i is well defined. By hypothesis, σi′ ≥ σi′ pointwise. Thus, xi

′
0 7→ σi′(xi

′
0 )− σi′(xi

′
0 )

is bounded below pointwise by a constant function that takes value 0, and bounded above pointwise
by a constant function that takes value maxj∈N pj − pj > 0. It follows that sup{σi′(xi

′
0 ) − σi′(xi

′
0 ) :

xi
′

0 ∈ [xi′0 , xi
′

0 ]} is well defined, and sup{σi′(xi
′

0 ) − σi′(xi
′

0 ) : xi′0 ∈ [xi′0 , xi
′

0 ]} = max{σi′(xi
′

0 ) − σi′(xi
′

0 ) :
xi
′

0 ∈ [xi′0 , xi
′

0 ]} because σi′ , σi′ are continuous by Berge’s Theorem (Lemma 23). By Lemma 20 result,
max{σi′(xi

′
0 )− σi′(xi

′
0 ) : xi′0 ∈ [xi′0 , xi

′
0 ]} ≥ max{σi′(xi

′
0 )− σi′(xi

′
0 ) : xi′0 /∈ [xi′0 , xi

′
0 ]} = {0}. It follows that

arg max
xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ) ⊆ [xi′0 , xi
′

0 ]. Thus, maxi′∈N max
xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ) has a solution. It
follows that i is well defined.

Let yi′ ∈ arg max
xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ), for all i′ ∈ N . The problem maxi′∈N σi′(yi′)− σi′(yi′) has
a solution, which we denote by j, and we define t := yj . By definition of yi′ , i′ ∈ N , we have that
maxi′∈N σi′(yi′)− σi′(yi′) ≥ maxi′∈N max

xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ). Therefore, i = j and t is the type (of
player i) for which σj(xj0)− σj(x

j
0) is maximized across players (j) and types (xj0). By the definition of

Bayesian Nash equilibrium, we have

∂+piUi(σi(t), t;σ−i) ≥ 0 and ∂−piUi(σi(t), t;σ−i) ≤ 0.

Therefore:

∂+piUi(σi(t), t;σ−i)− ∂−piUi(σi(t), t;σ−i) ≥ 0.

Let’s verify that:

A := −2µ
(
E
[
χ(σi(t))|χ(pi0) = t

]
− E

[
χ(σi(t))|χ(pi0) = t

]
−
∑
j

gijE
[
χ(σj(χ(pj0)))|χ(pi0) = t

]
− gijE

[
χ(σj(χ(pj0)))|χ(pi0) = t

])
< −2µ2cqT

i•1.

The claim follows from the next inequality,

A = −2µ2(σi(t)− σi(t)) + 2µ2∑
j

gijE
[
χ(σj(χ(pj0)))|χ(pi0) = t

]
− E

[
χ(σj(χ(pj0)))|χ(pi0) = t

]
≤ −2µ2(σi(t)− σi(t))qT

i•1,

which holds by definition of i and t.
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We have that:

∂+piUi(σi(t), t;σ−i)− ∂−piUi(σi(t), t;σ−i) =
A+B − [σi(t) > pi0]2qT

i•1ω + [σi(t) > pi0]2qT
i•1ω.

With:

B := −2ω
∑
j∈N

gijF (σ−1
j2 (σi(t)), pj0; t, pi0)− gijF (σ−1

j1 (σi(t)), p
j
0; t, pi0) ∈ [−2ω(1− qT

i•1), 2ω(1− qT
i•1)]

Then:

A+B − [σi(t) > pi0]2qT
i•1ω + [σi(t) > pi0]2qT

i•1ω > 0
B > −A

2ω(1− qT
i•1) > 2µ2cqT

i•1

ω
α
∑
j gij

1− α
∑
j gij

> µ2c

�

B.2 Finite Policy Spaces

B.2.1 Auxiliary results

The expected payoff of player i given symmetric information, σ−i, and a profile of status quo outcomes
(x1

0, . . . , x
n
0 )T = x0 ∈ Rn is

Ui(pi,x0;σ−i) := E{ui(χ(pi), χ(σ−i))|χ(p1
0) = x1

0, . . . , χ(pn0 ) = xn0},

for all pi ∈ R. We use Ui(pi,x0;σ−i,p0) when the status-quo policy profile is important.
We derive a second expression for the right and left derivatives of expected payoffs, based on vi. For

given policy p and nondecreasing strategy sj :

Ci(χ(p), χ(sj)) =


ω
∫
(−∞,s−j1(p)) sj(x

j
0)− pi0 dF i(xj0) + ω

[
1− F i(s−j1(p))

]
(p− pi0) , p > pi0,

0 , p = pi0,

ωF i(s−j2(p))(p− pi0)− ω
∫
(s−j2(p),∞) sj(x

j
0)− pi0 dF i(xj0) , p < pi0.

Thus, we have

∂Ci(χ(pi), χ(sj)) =


ω
[
1− F i(s−j (pi))

]
, pi > pi0,[

−ωF i(s−j2(pi0)), ω − ωF i(s−j1(pi0))
]

, pi = pi0

−ωF i(s−j (pi)) , pi < pi0.
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We express the left and right derivatives of the conditional expected payoff at pi 6= pi0 as follows.

∂−Ui(pi, xi0; s−i) ∝ Eiχ(pi)− δi − α
∑
j

γijEiχ(sj)−
1
−2µ

∂

∂pi
Viχ(pi)+

+2α 1
−2µ

∑
j

γij∂−Ci(χ(pi), χ(sj))

∂+Ui(pi, xi0; s−i) ∝ Eiχ(pi)− δi − α
∑
j

γijEiχ(sj)−
1
−2µ

∂

∂pi
Viχ(pi)+

+2α 1
−2µ

∑
j

γij∂+Ci(χ(pi), χ(sj)),

in which −2µ is the proportionality constant.

Lemma 28 (Continuity). Let s be a strategy profile and x0 := (x1
0, . . . , x

n
0 ) be the profile of status-quo

outcomes corresponding to status-quo policies p0 := (p1
0, . . . , p

n
0 ). Then:

(1) U i(pi, x0; s−i, p0) is a continuous function of (. . . , si−1(xi−1
0 ), pi, si+1(xi+1

0 ), . . . ).

(2) If · · · < p`−1
0 < p`0 < p`+1

0 < . . . , then: U i(pi, x0; s−i, p0) is a continuous function of p`0 on
(p`−1

0 , p`+1
0 ), ` ∈ N .

Proof. We prove (1) first. We have:

U i(pi, x0; s−i, p0) =
∫
· · ·
∫
ui(. . . , χ(si−1(xi−1

0 )), χ(pi), χ(si+1(xi+1
0 )), . . . )

dm(. . . , χ(si−1(xi−1
0 )), χ(pi), χ(si+1(xi+1

0 )), . . . ),

Where m is the distribution of a random vector that we describe in what follows. Because ui is quadratic,
the mean vector and the variance-covariance matrix of the random vector described by G determine
U i(pi, x0; s−i, p0). Thus, we prove (1) by means of the next two claims:

E
[
χ(q)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
is a continuous function of q. By the properties of Brownian

bridges:

E
[
χ(q)|χ(p1

0) = x1
0, . . . , χ(pN0 ) = xn0

]
=

χ(p1) + χ(p2)−χ(p1)
p2−p1

(q − p1) p1 ≤ q ≤ p2, p1 = max{pi0 : pi0 ≤ q}, p2 = min{pi0 : pi0 ≥ q}
χ(max p0) + µ(q −max p0) q ≥ max p0

χ(min p0) + µ(q −min p0) q ≤ min p0

Cov
[
χ(q), χ(q′)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
is a continuous function of q, q′. Let q ≤ q′:

Cov
[
χ(q), χ(q′)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
=

ω (p2−q′)(q−p1)
p2−p1

p1 ≤ q ≤ p2, p1 = max{pi0 : pi0 ≤ q}, p2 = min{pi0 : pi0 ≥ q}
Cov[χ(q′), χ(q) | χ(max p0)] q′ ≥ q ≥ max p0

Cov[χ(q′), χ(q) | χ(min p0)] q ≤ q′ ≤ min p0

0 else.
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Let’s establish (2). Let p1
0 < p2

0 < . . . . The expressions above show that mean and covariance terms of
the pair of random variables χ(q), χ(q′) | χ(p1

0), . . . , χ(pn0 ) are locally continuous in p1
0, . . . , p

n
0 . �

B.2.2 Definitions and Assumptions

We consider the same interim Bayesian game as the heterogeneous status quo game, except that the
policy space of every agent is a finite nonempty set and that n = 2. In particular, we consider the
two-player heterogeneous status quo game F , for fixed status quo policy profile p0 ∈ R2 and the finite
policy spaces defined in what follows, under the maintained assumption that p1

0 6= p2
0.

Let Ai = {ai,1, . . . , ai,Mi}, for given Mi ∈ N and every i ∈ N . We define the following payoff
differences, towards studying strategic complementarities

dui(ai, a′i, a−i, xi0) =
∫ ai

a′i

ui(pi, a−i, xi0) dpi

δi(ai, a′i, a−i, a′−i, xi0) = dui(ai, a′i, a−i, xi0)− dui(ai, a′i, a′−i, xi0).

Lemma 29 (Dominance Region). There exists x, x ∈ R such that: x < x and, for all i ∈ N, a−i ∈ A−i
it holds that

dui(ai,Mi , a
′
i, a−i, x

i
0) > 0 if ai 6= ai,Mi and xi0 > x,

and dui(ai,1, a′i, a−i, xi0) > 0 if ai 6= ai,1 and xi0 < x.

Proof. The result follows from Lemma 20. In particular, in the notation of the aforementioned result,
we define

x := max{x1, x2}
x := max{x1, x2}.

�

Lemma 30 (Strategic Complementarities). The function ui(·, xi0) exhibits increasing differences in
(ai, a−i), for all i ∈ N and xi0 ∈ R.

Proof. The result follows from Lemma 18. �

Lemma 31 (Type Monotonicity). The function ui(·, a−i, xi0) exhibits strictly increasing differences in
(ai, xi0), for all i ∈ N and a−i ∈ A−i.

Proof. The result follows from Lemma 18. �

Lemma 32 (Constant Type Monotonicity). For all i ∈ N, a′′i , a′i ∈ Ai with a′′i > a′i, and all a′′−i, a′−i ∈
A−i with a′′−i > a′−i, the function δi(a′′i , a′i, a′′−i, a′−i, ·) is constant on R.

Proof. In the proof of Lemma 18, we show an expression for dui(ai, a′i, a−i, xi0), which we use to write:

δi(a′′i , a′i, a′′−i, a′−i, xi0) =∫ a′′i

a′i

−2µ(−gi−i)µ(a′′−i − a′−i)− gi−i(∂−|pi − a′′−i| − ∂−|pi − a′−i|)ω dpi.

The result follows. �
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Lemma 33 (Existence of Cutoffs). For all i ∈ N, a′′i , a′i ∈ Ai and all a−i ∈ A−i, there exists x̃ ∈ R
such that

dui(a′′i , a′i, a−i, x̃) = 0.

Proof. In the proof of Lemma 18, we show that ui is strictly concave in i’s policy. The result follows. �

Lemma 34 (Payoff Continuity). For all i ∈ N, ai ∈ Ai and a−i ∈ A−i, the function ui(ai, a−i, ·) is
continuous on R.

Proof. ui(ai, a−i, ·) is a strictly concave function of the column vector (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) =
xi0])T, for a given j ∈ N , by positive definiteness of Q. The result follows since ui(ai, a−i, xi0)
is a function of xi0 only through (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) = xi0])T, and the function
xi0 7→ (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) = xi0])T is affine. �

In F , a strategy for player i is a function αi : R → Ai. We study Bayesian Nash equilibria of F
defined at the interim stage.

B.2.3 Existence of Bayesian Nash Equilibria

The proof is an adaptation of the one in Athey (2001). For simplicity of exposition, we prove the theorem
in the where A := A1 = A2 and M1 − 1 =: M , so that we may relabel policies as in A = {a0, . . . , aM}.
We say that strategy α′i improves upon strategy αi given α−i if: Ui(αi(xi0), xi0;α−i) ≤ Ui(α′i(xi0), xi0;α−i)
for all xi0.

We define the set of i’s cutoffs as

Σ̂i := {(x1, . . . , xM ) ∈ (R ∪ {−∞,∞})M : x1 ≤ x2 ≤ · · · ≤ xM},

Σ̂ = ×i∈N Σ̂i, and Σ̂ = ×j∈−iΣ̂j , We say that a strategy αi has finite cutoffs if a0, aM ∈ αi(R).

Lemma 35 (Finite Cutoffs). Let’s fix i ∈ N . If αi does not have finite cutoffs, there exists strategy α′i
that has finite cutoffs and improves upon αi given some nondecreasing strategy profile of i’s opponents.

Proof. Let’s suppose a0 ∈ αi(R) and aM /∈ αi(R). Let’s define b = inf{xi0 ∈ R : αi(xi0) = maxαi(R)}.
There exists k > 0 such that ∂−Ui(AM , b + k;α−i) > 0, because ∂−U ′i(AM , ·;α−i) is increasing for
nondecreasing α−i Let’s define the strategy α′i for player i as follows:

α′i : y 7→

αi(y) , y ≤ b+ k

aM , y > b+ k

The other cases can be dealt with similarly. �

Definition 5. (i) Given a nondecreasing strategy αi, x ∈ Σ̂i represents αi if the following holds for all
m ∈ {0, . . . ,M}.

xm =∞ if am > maxαi(R), xm = −∞ if am < minαi(R), and:

xm = inf{xi0 ∈ R : αi(xi0) ≥ am}, otherwise.
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(ii) Given a vector x ∈ Σ̂i, strategy αi is consistent with x if:

αi(xi0) =



a0 , xi0 ≤ x1

a1 , x1 < xi0 ≤ x2
...
aM , xM < xi0.

For fixed cutoff profile of i’s opponents, X−i = (xj)j∈−i ∈ Σ̂−i, we denote i’s expected payoff from
policy p as her expected payoff from (χ(p), χ(α−i(x−i0 ))), in which αj is consistent with xj , j ∈ −i; thus,
we have

Ûi(p, xi0;X−i) := Ui(p, xi0;α−i).

We define the best response to X−i of i as:

âBRi (xi0, X−i) = arg max
a∈Ai

Ûi(a, xi0;X−i)

Lemma 36 (Bounds of best-response cutoffs). There exists t, t such that the following holds. For every
i ∈ N,X−i ∈ Σ̂−i, nondecreasing selection ζ from âBRi (xi0, X−i) and cutoffs xi ∈ Σ̂i representing ζ, we
have:

−∞ < t ≤ xi1 ≤ · · · ≤ xiM ≤ t <∞.

Proof. The result follows from Lemma 20. �

Proposition 10 (Existence in Discrete Game). In the game F , there exists an equilibrium in nonde-
creasing strategies.

Proof. We apply Kakutani’s theorem to the following correspondence. Let’s define the set of cutoff
vectors that represent best response strategies to the profile X:

Γi(X−i) = {y ∈ Σ̂i : there exists a strategy for i consistent with y that
is a selection from aBRi (·, X−i)}.

We claim that there exists a fixed point of the correspondence (Γ1, . . . ,ΓI) : Σ→ Σ, where:

Σ := ×i∈NΣi and Σi := {x ∈ [t, t]M : x1 ≤ x2 ≤ · · · ≤ xM}.

Σi is compact, convex subset of RnM . Γ is nonempty-valued because action spaces are finite and the
Single Crossing Condition for games of incomplete information holds. Γ is convex-valued due to “Lemma
2” in Athey (2001), and the Single Crossing Condition for games of incomplete information. Γ has
closed graph, as established in the proof of “Lemma 3” in Athey (2001). Thus, by Kakutani’s theorem,
there exists a fixed point of Γ.

Next, we claim that a fixed point of Γ is an equilibrium of F . It follows from Lemma 36, because if
a strategy is a best-response against X−i, than it admits a representation with finite uniformly bounded
cutoffs. �
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Remark 4. We note that the proof of existence of Bayesian Nash equilibria in F does not rely on the
assumption that n = 2. Thus, it also establishes existence with finite policy spaces and n players.

Remark 5 (Existence in G(p0)). Following the approach in Athey (2001), there is a second existence
proof for nondecreasing strategy equilibria in G(p0), which uses a purification argument given existence
of an equilibrium in nondecreasing strategies in F .

Lemma 37. In G(p0), there exists an equilibrium in which every player’s strategy is nondecreasing.

Proof. For each player i, let’s consider a sequence of action spaces P •i , in which

P ki =
{
p
i
+ m

10k (pi − pi) : m = 0, . . . , 10k
}

, k ∈ N.

For every k, the game where finite action spaces P k1 , P k2 , . . . replace A1, A2, . . . has an equilibrium,
by Lemma 10. Let’s fix a sequence of equilibria in nondecreasing strategies, s•. Because action spaces
P k1 , P

k
2 , . . . are bounded by min p

i
and max pi, s• is a sequence of uniformly bounded nondecreasing

functions. By Helly’s selection theorem, s• admits a pointwise convergent subsequence, so we define
s? := lim s•. Because sk is an equilibrium, it holds that Ui(ski (xi0), xi0; sk−i) ≥ Ui(p, xi0; sk−i), for all k and
p ∈ P ki . Ui(p,x0; sk−i) is a continuous function of (. . . , ski−1(xi−1

0 ), ski+1(xi+1
0 ), . . . ), by lemma 28. Thus,

Ui(p, xi0; sk−i), which is the expectation of Ui(p,x0; sk−i), converges as k →∞. Therefore: it holds that
Ui(s?i (ti), xi0; s?−i) ≥ Ui(p, xi0; s?−i), for all p ∈ Pi. s? is an equilibrium of the game G(p1

0, . . . , p
N
0 ). �

B.2.4 Uniqueness of Bayesian Nash equilibria with 2 players

First, we establish two properties of beliefs in F , which we leverage to establish uniqueness of non-
decreasing strategy equilibrium.

Let Ci denote the space of nondecreasing strategies for player i ∈ N , in which a nondecreasing
strategy is identified by its finite sequence of “real cutoffs” (Mathevet, 2010). For k > 1, let’s compute
the probability that i attaches to her opponent playing strictly less than g = a−i,k ∈ A−i, given that i’s
type is xi0 and −i’s strategy is α−i:

Φ

α−−i1(g)− xi0 − µ(p−i0 − pi0)√
ω|pi0 − p

−i
0 |

,
in which α−−i1(g) is the real cutoff between a−i,k−1 and a−i,k implied by α−i. For k = 1, that probability
is 0.

Towards a definition of the above probability as a function of real cutoffs, we make the following
definitions. Given a policy g ∈ A−i, we let k−i(g) be such that: g = a−i,k−i(g). A real cutoff between
a−i,k and a−i,k+1 is denoted by cr−i,k, for k ∈ {1, . . . ,Mi − 1} (the interpretation for cr−i,k is that types
below cr−i,k play a−i,k and types above cr−i,k play a−i,k+1).

Given a nondecreasing strategy c−i ∈ C−i, g ∈ A−i, xi0 ∈ R, we define:

Λi(g|c−i, xi0) =


Φ
(
cr−i,k−i(g)−1−x

i
0−µ(p−i0 −p

i
0)√

ω|pi0−p
−i
0 |

)
if k−i(g) > 1,

0 if k−i(g) = 1.
.

54



Lemma 38 (FOSD and Translation Invariance). For all i ∈ N , and yi0, xi0 ∈ R with yi0 > xi0, we have:

Φ

s− yi0 − µ(p−i0 − pi0)√
ω|pi0 − p

−i
0 |

 < Φ

s− xi0 − µ(p−i0 − pi0)√
ω|pi0 − p

−i
0 |

.
Moreover, let c−i be a column vector real cutoffs with M−i columns corresponding to an element of C−i,
we have that

Λi(g|c−i + ∆1, xi0 + ∆) = Λi(g|c−i, xi0),

for all i ∈ N, g ∈ A−i and ∆ ∈ [0, x− x].

Proof. The first part follows from Lemma 13. The second part follows from the definition of Λi. �

Proposition 11. In the game F , there exists a unique equilibrium in nondecreasing strategies.

Proof. Given that we established existence of an equilibrium in nondecreasing strategies, it suffices to
establish that there exists at most one equilibrium in nondecreasing strategies. The proof uses the
same argument as “Proposition 2” and “Theorem 1” in Mathevet (2010). In particular, Lemmata 29
through 34 imply “Assumptions 1, 2, 3, 4, 5, 6” in Mathevet (2010), and beliefs in F satisfy FOSD and
Translation Invariance. �

Remark 6. This remark explains why the results for G(p0), either for existence and for the charac-
terization of extremal equilibria, are not used in F . This remark is informed by the approach taken in
Mathevet (2010) to establish uniqueness. For notational convenience, our next definition is valid under
the assumption that Ai ⊆ Pi for all i ∈ N ,

ϕFi (xi0, α−i) = arg max
pi∈Ai

Ui(pi, xi0;α−i).

We note that ϕFi differs from ϕi because the respective optimization problems have different feasible sets:
Ai and Pi, respectively. If the mapping xi0 → supϕFi (xi0, α−i) is measurable, then there exists a unique
equilibrium in F .39 However, ϕFi (xi0, α−i) is not necessarily single-valued, so the Caratheodory-function
argument used in G(p0) does not hold in F .

C Proofs for Section 2

Proof of Lemma 1.

Proof. By strict concavity of expected payoff in own policy (Lemma 18), it is enough to verify that, up
39 Here is the reason. Let’s order individual strategies and strategy profiles in F as in the heterogeneous status quo game.

To establish uniqueness, by Proposition 11, it suffices to establish that there exists a largest and a smallest equilibrium, and
that they are in nondecreasing strategies. Once we establish that the “GBR” mapping is measurable — ie, the equivalent
in F of Lemma 21 in G(p0) —, the same argument that we adopt to establish Proposition 26 in G(p0) is valid in F .
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to a positive proportionality constant of −2µ, the right derivative of expected payoff in own policy is:

∂pi+Eπi(χ(p)) ∝ Eχ(pi)− βi − α
∑
j

γij(Eχ(pj)− βj + ∂pi+|pi − pj |k)

−

1− α
∑
j

γij

 1
−2µ∂pi+Vχ(pi),

which follows from the independent Proposition 12. The result follows because p−i 7→ ∂pi+Eπi(χ(p))
is increasing (this step is shown explicitely in the proof of 18, and it is omitted here for the sake of
brevity.) �

Proof of Proposition 1.

Proof. In G0, strategy spaces are compact intervals and player i’s payoff function is continuous in pi for
all p−i (Lemma 18) and strictly supermodular in (pi, p−i) (Lemma 8). The result follows from Tarski’s
fixed point theorem, and the argument is known in the literature on supermodular games (Milgrom and
Roberts, 1990; Vives, 1990). �

Proof of Proposition 2.

Proof. Without loss of generality, we set p0 = 0 to ease on notation. By right and left differentiation of
the strictly concave expected payoff of player i in own payoff (Lemma 18), at policy profile p, and by the
best-response equivalence established in Lemma 12, the best response constraints for i are equivalent to
the following pair of inequalities:

Eχ(pi)− βi − α
∑
j

γij(Eχ(pj)− βj) ≤ ([pi ≥ 0]− [pi < 0])k

+α
∑
j

γij([pi ≥ pi]− [pi < pj ])k

and ([pi < 0]− [pi ≤ 0])k + α
∑
j

γij([pi < pi]− [pi ≥ pj ])k ≥ Eχ(pi)− βi

−α
∑
j

γij(Eχ(pj)− βj),

which are found by left and right differentiation of the strictly concave potential, separately in each
individual policy (i.e. for all pi’s). The result follows from rearranging the above inequalities in matrix
notation. �

Proof of Lemma 2.

Proof. The result follows directly from the results in Belhaj et al. (2014), and also the analysis in
Ballester et al. (2006). �

Proof of Corollary 1.

Proof. The result follows from the analysis of Callander (2011a), or the same arguments leading to
Lemma 1 and Proposition 2. �
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D Proofs for Section 3

Proofs of Section 3

Proof of Lemma 2.

Proof. The present proof uses the notation described in Section A. By the equilibrium decomposition:

QEχ = b+Q1k + (G�A)1k

Thus:

qT
i•Eχ = bi + qT

i•1k +
∑
j

gijaijk

So, by symmetry of G

(Eχ(pi)− Eχ(pj))(1 + gij) = bi − bj + qT
i•1k − qT

j•1k+

+
∑

`/∈{i,j}
(gi` − gj`)Eχ` +

∑
`/∈{i,j}

(gi`ai` − gj`aj`)k + gij(aij − aji)k

Which simplifies to:

(Eχ(pi)− Eχ(pj))(1 + gij) = bi − bj + αγ
∑

`/∈{i,j}
(ai` − aj`)k − 2gk

From the equilibrium decomposition, it holds that: (i) ai`− aj` ∈ [−2, 0] if pi < pj , and (ii) ai`− aj` = 0
only if: p` ∈ {pi, pj} or p` ∈ Pi \ [pi, pj ]. The result follows. �

Proof of Lemma 3

Proof. We use the notation developed in Section A. We have that, for all i,m ∈ N

Eχ(pi) = βi + k + (I −G)−1
ii

∑
`∈N

gi`ai`k+

+
∑

j∈N\{i,m}
(I −G)−1

ij

∑
`∈N

gj`aj`k + (I −G)−1
im

∑
`∈N

gm`am`k.

Thus:

Eχ(pi)− Eχ(pm) = βi − βm +
[
(I −G)−1

ii − (I −G)−1
mi

]∑
`∈N

gi`ai` −
∑
`∈N

gm`am`

k
Letting g := αγ, by computation of (I −G)−1, we have that the diagonal element is 1−g(n−1)+g

(1−g(n−1))(1+g)
and the off-diagonal element is: g

(1−g(n−1))(1+g) , so that:

(I −G)−1
ii − (I −G)−1

im = 1
1 + g

.
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Thus, by the preceding equality we have:

Eχ(pi)− Eχ(pm) = βi − βm + g

1 + g

∑
`∈N

ai` −
∑
`∈N

am`

k
= βi − βm −

g

1 + g
2k + g

1 + g

 ∑
`∈N\{i,m}

ai` − am`

k.
The result follows from the equilibrium decomposition in Proposition 2 and the hypotheses on p. �

Proof of Lemma 5.

Proof. The result follows from Lemma 11. �

Towards the proof of Lemma 3, we establish an auxiliary result. We say that Γ is complete if:
γij = 1 for all j ∈ N \ {i} and γii = 0 for all i ∈ N . We say that the equilibrium p is ordered if:
p1 < p2 < · · · < pn, and a the equilibrium p is interior if: pi ∈ (p0, p), i ∈ N .

Lemma 39. Let Γ be complete. Then, Assumption 1 is satisfied if, and only if: α < 1/(n−1). Moreover,
if p ∈ (p0, p)n is an ordered equilibrium and i ∈ {1, . . . , n− 1}, then

Eχ(pi)− Eχ(pi+`) = βi − βi+` − 2` α

1 + α
k, ` ∈ {1, . . . , n− i}.

Furthermore, if δi − δi+1 > 2 α
1−αk, then: every interior equilibrium is ordered, and there exists at most

one ordered interior equilibrium.

Proof. Assumption 1 is satisfied if, and only if: α < 1/(n− 1). The result follows from the largest
eigenvalue of Γ being λ(Γ) = n− 1.

“Moreover” part. By the Decomposition of equilibrium expected outcomes, pi < pj implies

Eχ(pi)− Eχ(pj) = βi − βj + α

1 + α

∑
`∈N\{i,j}

(ai` − aj`)k − 2 α

1 + α
k,

in which ai`, aj` are elements of the matrix A in the decomposition, and we used the properties of the
complete Γ. The formula for Eχ(pi)− Eχ(pi+`) in the Lemma follows from the properties of A stated in
the decomposition given that p is ordered.

It remains to verify that Eχ(pi) ≥ βi. We set α̂ = α(n − 1) for α̂ ∈ (0, 1) — if α̂ = 0, then
Eχ(pi) = βi + k ≥ βi. After computation of the Leontieff inverse B, it is established that:

1 + α̂
∑
j∈N

Bijaij = 1− (n− 1)(1− α̂) + α̂

(n− 1 + α̂)(1− α̂) α̂+ α̂

(n− 1 + α̂)(1− α̂) α̂(n− 1),

using the properties of the matrix A for an interior ordered equilibrium p (and the entries of B,
described in the proof of Proposition 3).

We verify that

1 + α̂
∑
j∈N

Bijaij ≤ 0 ⇐⇒ (n− 1)(1− α) + α+ 2α2(n− 2) ≤ 0

Since the left-hand side of the above inequality is always positive, the result follows.
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“Furthermore” part. This result is established in the proof of Proposition 3. �

Proof of Lemma 3.

Proof. The result is an implication of Lemma 39 �

Towards the proof of Lemma 4, we establish an auxiliary result. We say that Γ is a line if: (i)
γii+1 = 1 for all i ∈ {1, . . . , n− 1}, (ii) γii−1 = 1 for all i ∈ {2, . . . , n}, and (iii) γij = 0 otherwise. We
say that the equilibrium p is ordered if: p1 < p2 < · · · < pn.

Lemma 40. Let Γ be a line and 0 < α < 1/2. Then, Assumption 1 is satisfied. Moreover, if p ∈ (p0, p)n
is an ordered equilibrium and i ∈ {1, . . . , n− 1}, then

Eχ(pi)− Eχ(pi+`) = βi − βi+` − a(i, `, n, α)k, ` ∈ {1, . . . , n− i},

for some a(i, `, n, α) > 0.
Furthermore, Eχ(pi) ≥ βi.

Proof. (1) Characterization of the inverse of I − αΓ using Toeplitz matrices.
We have that I − αΓ =: S = [Sij : i, j ∈ N ] in which (i) Sii+1 = −α for all i ∈ {1, . . . , n− 1}, (ii)

Sii−1 = −α for all i ∈ {2, . . . , n}, (iii) Sij = 1 and (iv) Sij = 0 otherwise. This matrix S Toeplitz
becase it is constant on each diagonal. We study the following transformation T of S.

T = 1
α
S,

so that T in which (i) T ii+1 = −1 for all i ∈ {1, . . . , n − 1}, (ii) T ii−1 = −1 for all i ∈ {2, . . . , n},
(iii) T ij = a := 1/α and (iv) T ij = 0 otherwise. T is Toepliz, and the entries of its inverse can be
characterized starting from the two solutions to r2−ar+ 1 = 0. If 0 < α < 1/2, there exists two distinct
roots, defined as:

r− :=1−
√

(1 + 2α)(1− 2α)
2α

r+ :=1 +
√

(1 + 2α)(1− 2α)
2α .

It is straightforward to establish that 0 < r− < 1 < 1/α < r+ < 1/α + 1. By the characterization of
inverse of Toeplitz matrices (e.g., Theorem 2.8 in Meurant (1992)), we have: T−1 = [T−1

ij : i, j ∈ N ] and

T−1
ij =

(ri+ − ri−)(rn−j+1
+ − rn−j+1

− )
(r+ − r−)(rn+1

+ − rn+1
− )

, j ≥ i.

(2) Characterization of vector αΓ�A1k, given an ordered equilibrium. We have that:

αΓ�A1k = α



−1
0
...
0
1

k.
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(3) Characterization of vector e := (I − αΓ)−1αΓ �A1k, given an ordered equilibrium. By
using the definition of T−1, and e = [ei : i ∈ N ] we have that:

ei = −k
(
−

ri+ − ri−
rn+1

+ − rn+1
−

+
rn−i+1

+ − rn−i+1
−

rn+1
+ − rn+1

−

)

= −
rn−i+1

+ − ri+ − rn−i+1
− + ri−

rn+1
+ − rn+1

−
k.

It follows that

ei − ei+` ∝ −
(
rn−i+1

+ − rn−i−`+1
+ − ri+ + ri+`+ − rn−i+1

− + rn−i−`+1
− + ri− − ri+`−

)
,

which is a positive number. We take:

a(i, `, n, α) =
rn−i+1

+ − rn−i−`+1
+ − ri+ + ri+`+ − rn−i+1

− + rn−i−`+1
− + ri− − ri+`−

rn+1
+ − rn+1

−
.

(4) Largest Eigenvalue of Γ. The adjacency matrix Γ is Toeplitz. By known results (Theorem 2.2
in Kulkarni et al., 1999), the largest eigenvalue is

λ(Γ) = −2 cos(πn/(n+ 1)) ∈ [0, 2).

“Furthermore” Part. We verify that ei ≥ −k. In particular,

−ei/k > 1 ⇐⇒ rn−i+1
+ − ri+ − rn−i+1

− + ri− > rn+1
+ − rn+1

−

⇐⇒ −ri+ + ri− > rn+1
+ (1− r−i+ )− rn+1

− (1− r−i− ).

The right-hand side of the above inequality is positive and the left-hand side is negative, by definition
of r+, r− and α ∈ (0, 1/2), i ∈ N . Thus, it holds that −ei/k ≤ 1. �

Proof of Lemma 3.

Proof. The result is an implication of Lemma 40. �

Proofs for section 3.5

A representative consumer has quasi-linear preferences over bundles of n+1 goods, which are represented
by the quadratic utility function U such that

U(q1, . . . , qn, z) =
∑
i

âiqi −
1
2b
∑
i

q2
i −

1
2c

∑
i,j:j 6=i

qiqj + z,

in which r denotes the numéraire good. Let B = c11T + (b − c)I be the matrix with b on the main
diagonal and c in off-diagonal entries.

Lemma 41. Let b > c > 0. Then: B is a symmetric and positive definite matrix. Its inverse
B−1 is symmetric, positive definite, its entries given by b−c+(n−1)c

(b−c)[(n−1)c+b] on the main diagonal, and
− c

(b−c)([(n−1)c+b]) in off-diagonal entries.
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Proof. B is symmetric. The eigenvalues of 1
bB are 1− c/b and 1 + n−1

b c, so B is positive definite. Then,
B−1 is well-defined, positive definite and has eigenvalues (b− c)−1 and (b+ (n− 1)c)−1.

We verify that B−1 = r11T + 1
b−cI, for r = − c

(b−c)((n−1)c+b) . Let’s observe that 11T11T = n11T,
and:

BB−1 = I ⇐⇒ r11Tc11T + I + r(b− c)11TI + c

b− c
11TI = I

⇐⇒ rcn11T +
[
r(b− c) + c

b− c

]
11T = I − I

⇐⇒ r = − c

(b− c)((n− 1)c+ b) .

�

By normalizing the main-diagonal entries of B−1 to 1, the off-diagonal elements are 1− 1
b−c . We

note that 1− 1
b−c < 0 ⇐⇒ 1− (b− c) > 0. Thus, in what follows we assume 1 > b− c. Moreover, we

assume that ζ := 1−(b−c)
b−c < 2

n−1 . Our parameter assumptions are summarized as follows

Assumption 4 (Demand System 2). We assume that

(1) Goods are utility-substitute and U is strictly concave, which is equivalent to what is assumed in
the main body of the text.

(2) Own-price coefficients of demand are all equal to −1 and that the degree of utility substitutability
c is bounded above by b− n−1

n+1 .

The two assumptions are jointly represented by:

c ≥ 0 and 1 > b− c > n− 1
n+ 1 .

b > c ≥ 0 is equivalent to requiring that the following two conditions jointly hold: (i) goods are utility-
substitute (U is submodular) and (ii) U is strictly concave. The requirement 1 > b−c is needed following
the normalization that own-price coefficient of demand is −1, and 1−(b−c)

b−c < 2
n−1 is the content of

Assumption 1 in the current setup after the normalization (we note that 1−(b−c)
b−c < 2

n−1 ⇐⇒ b−c > n−1
n+1).

In the following remark, we verify that the additional assumptions can be dispensed of, which justifies
that in the main text we only assume b > c ≥ 0.

Remark 7 (Comparison of Assumption 4 with the model of oligopoly in Section 3). Under our assump-
tions, goods are mutually direct substitutes (Weinstein, 2022), substitutes in the sense of Hedgeworth
and Marshallian demand satisfies the Law of Demand (Amir et al., 2017). Moreover, for a positive
price vector v and sufficiently large income, demand for the goods excluding the numeraire is given by
B−1(â− x).

Let’s show that under b > c ≥ 0 the analysis goes through without the extra content in Assumption 4.
First, let’s observe that the concavity assumption on demand — positive definiteness of B following from
b > c ≥ 0 according to Lemma 41 — guarantees positive definiteness of B−1, and induces a contractive
property on the best-response mapping of the game

〈
N, {πBi ,R}i∈N

〉
. Letting Diag(M) return an n× n

diagonal matrix whose entries are the n elements in the main diagonal of matrix M , such best-response

61



mapping follows form first-order conditions and is given by:

BR(x) = −2 Diag(B−1)x+
[
Diag(B−1)−B−1

]
x+B−1â+ Diag(B−1)x̂

= −
[
Diag(B−1) +B−1

]
x+B−1â+ Diag(B−1)x̂.

The Jacobian of BR(x) is given by −
[
Diag(B−1) +B−1], which is negative definite iff Diag(B−1)+B−1

is positive definite. The diagonal entries of B−1 are positive (Lemma 41). Thus, the best-reply mapping
is a contraction.

Secondly, to establish that the normalization on demand coefficients is innocuous, we show that the
coefficients of B−1 are negative, shown in Lemma 41.

We assume that each of the prices of n goods is set by one of n firms that compete in prices. Each
of n firms has constant marginal costs and no fixed costs. Let D := −B−1 = [Dij : i, j ∈ N ] be the
matrix of demand coefficients. Given a profile of prices x̂ and marginal costs m̂, profits of firm i are:

πBi (x̂) := (x̂i − m̂i)

∑
j∈N

Dij(x̂j − âj)


=

m̂i + âi −
∑
j∈−i

Dijaj

x̂i − x̂2
i +

∑
j∈−i

Dij x̂ix̂j + F,

for a term F = −m̂i

(
âi −

∑
j∈−iDij âj

)
− m̂i

∑
j∈−iDij x̂j that is constant with respect to x̂i. We can

equivalently express profits in terms of markups, x := x̂− m̂, letting a := â− m̂, to write

πBi (x) :=

ai − ζ ∑
j∈−i

aj

xi − x2
i + ζ

∑
j∈−i

xjxi,

for ζ = 1−(b−c)
b−c . In particular, we note that we may set:

2αγij = ζ

2(1− α)δi =

ai − ζ ∑
j∈−i

aj

.
So that the largest eigenvalue of Γ is ζ

2(n− 1) and the content of Assumption 4 is justified in light of
Assumption 1.

Proof of Proposition 3.

Proof. First, the pricing game has the same set of equilibria as the particular case of G(x0) in which:
p− p0, the favorite outcome of i is âi/[2(1− α)], coordination motives are ζ/2 and Γ is the adjacency
matrix of a network in which γij = 1, i ∈ N, j ∈ −i, which we refer to as a complete network for
the present proof. This result follows from Lemma 5. This observation implies the first part of the
proposition via Lemma 3.

Second, let’s establish a property of equilibria. Let p be an equilibrium. By the decomposition in
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Proposition 2, if the network is complete and pi = pj , then

(1 + α)[Eχ(pi)− Eχ(pj)] = (1− α)(δi − δj)−mαk,

for m ∈ [0,M ], in which- M = |{` ∈ N : p` ∈ [pi, pj ]}|. In particular, a similar derivation is described in
the proof of Lemma 2, and it is omitted in the present proof. From the above equality it follows that:
pi = pj implies that mαk ≥ (1− α)(δi − δj). In the pricing game, then, pi = pj implies that

mζk ≥ âi − âj . (4)

Third, we establish that: if mini∈N,j∈−i |âi − âj | > 2ζk, the no two players choose the same policy
in equilibrium. In what follows, we fix an equilibrium p? ∈ (p0, p), and a policy p ∈ (p?1, . . . , p?n) that is
played in equilibrium by a number of players m ∈ {2, n}. For fixed number of players m ∈ {2, . . . , n}
who play the same policy p in equilibrium p?, there exist players i′, j′ who play p and with

âi′ − âj′ > (m− 1) min
i∈N,j∈−i

|âi − âj | (5)

In particular, this observation holds by taking i′, j′ to be the players choosing, respectively, min{p?1, . . . , p?n}
and max{p?1, . . . , p?n}. Let’s observe that: if mini∈N,j∈−i |âi − âj | > 2ζk, then mini∈N,j∈−i |âi − âj | >
m′

m′−1ζk for all m′ ∈ {2, . . . , n}, so:

(m− 1) min
i∈N,j∈−i

|âi − âj | > mζk.

Hence, if mini∈N,j∈−i |âi − âj | > 2ζk, inequality 4 contradicts inequality 5.
Fourth, we show that the only interior equilibrium in which no two players choose the same policy is

p1 <, . . . , < pn if mini∈N,j∈−i |âi − âj | > 2ζk. By the proof of Lemma 2, if the network is complete and
p ∈ (p0, p)n is an equilibrium with p0 < p1 < · · · < pn < p, then

(1 + α)[Eχ(pi)− Eχ(pj)] = (1− α)(δi − δj)− 2αk,

whenever pi < pj . We note that α < 1 under a complete network, by Assumption 1.
Hence, if mini∈N,j∈−i |âi − âj | > 2ζk and p ∈ (p0, p)n is an equilibrium of the pricing game, then

p0 < p1 < · · · < pn < p up to a permutation of players. Moreover, by the decomposition in Proposition
2, if mini∈N,j∈−i |âi − âj | > 2ζk there exists at most one interior equilibrium.

�

Proofs for Remark 1 We say that players have the same unweighted centrality if u := (I − αΓ)−11
is such that ui = uj for all players i, j ∈ N . An equilibrium p ∈ Pn is symmetric if pi = pj for all
players i, j ∈ N .

Lemma 42. Let players have the same centrality, same unweighted centrality, and p = p0. If χ(p0) and
p are sufficiently large, there exist a greatest and a least symmetric equilibrium, respectively q and s.
Moreover:

Eχ(q) = β + 1k
Eχ(s) = β + 21k − uk.
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Proof. Application of the Decomposition of Equilibrium Expected Outcomes
Let ([pi < pj ], i, j ∈ N) and ([pi ≤ pj ], i, j ∈ N) be two n-by-n matrices, in which [Y ] is the Iverson
bracket of the statement Y , so [Y ] = 1 if the statement Y is true, and [Y ] = 0 otherwise. We define
Γ+(p) = Γ � ([pi < pj ], i, j ∈ N) and Γ−(p) = Γ � ([pi ≤ pj ], i, j ∈ N). By the decomposition in
Proposition 2, p ∈ (p0, p)n is an interior equilibrium if, and only if:

k(I − 2αΓ−(p))1 ≤ (I − αΓ)(Eχ(p)− β) ≤ k(I − 2αΓ+(p))1.

Implications of symmetric equilibria
If p ∈ (p0, p)n, then:

β + (I − αΓ)−1(I − 2αΓ−(p))1k = β + 21k − uk
β + (I − αΓ)−1(I − 2αΓ+(p))1k = β + 1k.

(The first equality follows from the definition of B.)
The result follows. �

Corollary 3. Let δi = 0 for all i ∈ N and players have the same unweighted centrality. Then,
p ∈ (p0, p)n is an equilibrium if, and only if:

Eχ(p) ∈ [(21− u)k,uk].

Moreover: uk is increasing in α and k, (21− u)k is decreasing in α, and (2− ui)k is increasing in k
iff ui < 2.

Proof of Lemma 1

Proof. The first part of the proof is a consequence of an observation made in Vives (1999), Chapter
2, Footnote 23, and the potential structure of the game (Proposition 17.) The second part follows
from Corollary 3, after noting that players have the same unweighted centralities under a complete
network. �

E Proofs for Section 4

Proofs for Section 4.1

Towards the proof of Proposition 4, introduce a definitions and several lemmata.

Definition 6 (Monderer and Shapley (1996)). The game in strategic form 〈I, {Si, ui}i∈I〉 is a potential
game if there exists a function U : ×i Si → R such that, for all i ∈ I, s−i ∈ ×j 6=iSj and si, s′i ∈ Si:

ui((si, s−i)) > ui((s′i, s−i)) iff U((si, s−i)) > U((s′i, s−i));

the function U is called a potential for the game.

Towards the study of a selection rule for equilibria of G(x0), we introduce a function that is related to
the potential of the game without complexity. The no-complexity potential is the function v : Rn → R
given by

v(x) = 2(1− α)δTx− xT(I − αΓ)x.
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And the expected no-complexity potential V : Pn → R is given by

V (p) = Ev(χ(p)), for all p ∈ Pn.

The expected no-complexity potential, or potential, provides a potential for the game G(x0), as
established by the next results. The function v is the potential of the game S defined in Section 2.3;
this result is a corollary to Proposition 12 and is known (Jackson and Zenou, 2015).

Lemma 43. The game G(x0) is a potential game. Moreover, for every player i ∈ N there exists a
function gi : Pn−1 ×R → R such that:

Eπi(χ(p)) = Ev(χ(p)) + gi(p−i, xi0) for all p ∈ Pn and x0 ∈ R,

and a potential for G(x0) is the expected no-complexity potential V : p 7→ Ev(χ(p)) given the status-quo
outcome x0.

Proof of Lemma 43.

Proof. We first establish von-Neumann-Morgenstern equivalence (Morris and Ui, 2004) between the two
strategic-form games S and 〈N, {P, v}i∈N 〉. Thus, we show that: for all i ∈ N , there exists a function
hi : Rn−1 → R such that

πi(x)− v(x) = hi(x−i) for all x ∈ Rn.

The claim is a consequence of Γ being a symmetric matrix. In particular, we note that
∑

(i,j)∈N2 γijxixj−
2
∑
j∈N γ

ijxixj is constant with respect to xi, and:

v(x)− vi(x) =
∑
j∈−i

(
2(1− α)δjxj − x2

j

)
+ α

∑
(i,j)∈N2

γijxixj − 2α
∑
j∈N

γijxixj .

The second part of the Lemma follows, by observing that vi(x)− πi(x) is constant in x−i, as shown in
Section A, and taking expectations given the status-quo outcome.

It remains to establish that von-Neumann-Morgenstern equivalence betweenG0 and 〈N, {P,Ev(χ(p))}i∈N 〉
implies that G0 is a potential game according to the definition in Monderer and Shapley (1996). We
prove a stronger statement: V is a w-potential for G(x0) with wi = 1 for all i ∈ N , that is, G(x0) is
an weighted and exact potential game, and V is a weighted and exact potential. The intuition for the
observation is the same underlining Lemma 1 in Morris and Ui (2004), we include a proof solely because
the authors assume finite strategy spaces.

Let Πi(qi, p−i) := Eπi(χ(p1), . . . , χ(qi), χ(pi+1), . . . ). By the definitions of Monderer and Shapley
(1996), pages 127-128, V is an exact potential for G(x0) if Πi(pi, ·)−Πi(p′i, ·) = V ((pi, ·))− V ((p′i, ·)) for
all pi, p′i ∈ P . By our preceding results:

Πi(pi, p−i)− V ((pi, p−i)) = gi(p−i, x0) and Πi(p′i, p−i)− V ((p′i, p−i)) = gi(p−i, x0).

Thus, we have

Πi(pi, p−i)− V ((pi, p−i)) = Πi(p′i, p−i)− V ((p′i, p−i)),

65



which we rearrange to write:

Πi(pi, p−i)−Πi(p′i, p−i) = V ((pi, p−i))− V ((p′i, p−i)).

�

Lemma 44. If U is a potential for the game G(x0), there exists a constant c ∈ R such that

U(p) = V (p) + c, for all p ∈ Pn.

Moreover, if p is a potential maximizer, then p is an equilibrium of G(x0).

Proof of Lemma 44.

Proof. Let p ∈ Pn be a potential maximizer and i ∈ N, qi ∈ P such that

Eπi(χ(p)) < Eπi(. . . , χ(pi−1), χ(qi), . . . ).

By Lemma 43, we have

Ev(χ(p)) < Ev(. . . , χ(pi−1), χ(qi), . . . ),

Which contradicts the definition of p.
The second part of the Lemma follows from Lemma 2.7 in Monderer and Shapley (1996) if G(x0)

is an exact potential game, using a definition in Monderer and Shapley (1996), pages 127-128. In the
proof of Lemma 43, we establish that G(x0) is an exact potential game when we show that V is an
exact potential for G(x0). �

Proposition 12. The game G(x0) is a potential game and V : Pn → R is a potential for G(x0).
Moreover,

(1) If U : Pn → R is a potential for G(x0), there exists a constant c ∈ R such that

U(p) = V (p) + c, for all p ∈ Pn.

(2) If the policy profile p ∈ Pn maximizes V , then p is an equilibrium of G(x0).

Proof of Proposition 12

Proof. The Proposition follows directly from Lemmata 43 and 44. �

We establish an auxiliary Lemma towards the proof of Proposition 5. Towards a characterization
of the potential maximizer, we note that the no-complexity potential can be expressed as v(x) =
−(x− β)T(I − αΓ)(x− β) + βT(I − αΓ)β, which directly implies the following expression for V .

Lemma 45. For all policy profiles p ∈ Pn, we have that

V (p) = −(Eχ(p)− β)T(I − αΓ)(Eχ(p)− β)−
∑
i∈N

Vχ(pi) + α
∑
i,j∈N

γijC[χ(pi), χ(pj)],

up to a term that is constant in p.
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Proof of Lemma 45.

Proof. We observe that the potential function v is a quadratic form, so V (p) = −(Eχ(p) − β)T(I −
αΓ)(Eχ(p)− β)− tr((I − αΓ)Ω) + βT(I − αΓ)β, in which Ω is the variance-covariance matrix of χ(p)
given χ(p0) = x0, which is well-defined by joint Gaussianity of outcomes and ω > 0. �

Proposition 13 (Potential Maximizer). Let P = [p0, p]. There exists a unique potential maximizer.
Moreover, the policy profile p ∈ (p0, p)n is a potential maximizer if, and only if:

Eχ(p) = β + 1k + α(I − αΓ)−1(Γ�A)1k,

for a skew-symmetric matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1] and aij = 1, if pi > pj.

Proof of Proposition 13.

Proof. The first part of the result is a consequence of standard tools in convex analysis. First, we claim
that there exists at most one potential maximizer. This follows from strict concavity of V , proved
in Section A.3. For existence given strict convexity of −V see, e.g., Proposition 9.3.2, part (iv), in
Briceño-Arias and Combettes (2013), stated in a game-theoretic environment.

The characterization of the potential maximizer is established in Lemma 16. �

Proof of Proposition 4.

Proof. Part (1) follows from Proposition 12. Part (2) follows from Proposition 13. �

Proof of Proposition 5.

Proof. The result follows from Proposition 13. �

Proof of Proposition 6.

Proof. We use the notation developed in Section A, in which we define vi as the “effort-game ex-post
payoff”, defined over outcome profiles. It holds that:

v(x) =
∑
i

vi(x)− αxTΓx.

Thus, we have that:

W (p) = E
[
v(χ(p)) + αχ(p)TΓχ(p)|χ(p0) = x0

]
.

Strict concavity ofW on [p0, p]n follows from the same argument as Lemma 14. Thus, the superdifferential
of W is well-defined. By standard subgradient calculus (Rockafellar, 1970), we write the following
expression for ∂W , using + for (Minkowski) set addition,

∂W (p) = ∂V (p) + ∂E
[
αχ(p)TΓχ(p)|χ(p0) = x0

]
.

Using the decomposition of expectation of quadratic forms, we have:

∂W (p) = ∂V (p) + 2αΓ∂E[χ(p)] + α∂
∑

(i,j)∈N2

γij C(χ(pi), χ(pj)),
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for which we also apply symmetry of Γ. The result follows from the characterization of ∂V (p) in Lemma
16, in which we also characterize ∂

∑
(i,j)∈N2 γij C(χ(pi), χ(pj)). �

Proofs for Section 4.2 and Section 4.3

In this section, we assume that P = [p0, p].

Lemma 46. Let |a1 − c1 − a2 + c2| ≤ −gk. For sufficiently large χ(p0), total profits are maximized by

Eχ(pi) = min
{
b
a− c1 + a− c2

4(1 + gb) + k, χ(p0)
}
.

The maximization of total profits is implemented in equilibrium if, and only if: a− c1 + a− c2 ≤ 1+bg
b 2k.

Proof. By Lemma 5, we find the set of equilibria using Proposition 2. By Proposition 6 and Lemma 5,
we find the maximizer of total profits by using 47 and 2g in place of g. �

Dyad

We assume that N = 2, and we use α̂ := αγ12. We use χi := χ(pi), χ for the column vector of
outomes (χ(p1), χ(p2))′, and ∂pi for the subdifferential with respect to pi. The expectation operators are
conditional on χ(p0) = x0. Let y+ := max{β1, β2}+ k

(
1− α̂

1+α̂

)
, y− := min{β1, β2}+ k

(
1 + α̂

1+α̂

)
.

Lemma 47 (Dyad). Let y+ ≥ x0 and Eχ(p) ≥ y−. The following hold.

(1) If (1−α)(δ2− δ1) ≥ 2α̂k, then there exists a unique equilibrium in G|x0
. Moreover, in equilibrium:

Eχ1 = β1 + k

(
1 + α̂

1 + α̂

)
Eχ2 = β2 + k

(
1− α̂

1 + α̂

)
,

which imply

Eχ2 − Eχ1 = β2 − β1 − 2 α̂

1 + α̂
k.

.

(2) If (1− α)(δ2 − δ1) < 2α̂k, then there exist multiple equilibria in G|x0
. Moreover, in equilibrium:

(1− α)(δ2 − δ1) = α̂(d1 − d2), for some d2, d1 ∈ [−1, 1]

Eχ1 = Eχ2 = β1 + β2
2 + k + α̂

1− α̂
d1 + d2

2 k

∈
[
β1 + β2

2 + k − α̂

1− α̂k,
β1 + β2

2 + k + α̂

1− α̂k
]
.

(3) If 0 ≤ (1− α)(δ2 − δ1) < 2α̂k, then there exists a unique potential maximizer in G|x0
. Moreover,
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in the potential maximizer: (1− α)(δ2 − δ1) = 2α̂d1k, d1 ∈ [0, 1), and:

Eχ1 = β1 + k

(
1 + α̂

1 + α̂
d1

)
Eχ2 = β2 + k

(
1− α̂

1 + α̂
d1

)
,

which imply

Eχ1 = (β1 + β2)/2 + k.

Proof. The expected effort-game payoff to player i is:

Evi(χi, χj) = 2(1− α)δiEχi − (Eχi)2 + 2α̂EχiEχj − Vχi + 2α̂Cχiχj ,

up to a term that is constant with respect to pi. The superdifferential of Evi(χi, χj) with respect to pi
is:

2µ(1− α)δi − 2µEχi + 2µα̂Eχj − ω + α̂ω − α̂ω∂pi |pi − pj |.

In any interior equilibrium p:

0 ∈
(

1 −α̂
−α̂ 1

)
Eχ− (1− α)δ −

(
1 −α̂
−α̂ 1

)
1k − α̂

(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k

Thus, we obtain the following interior equilibrium condition. p ∈ (p0, p) is an equilibrium if, and
only if:

Eχ ∈ 1− α
1− α̂2

(
1 α̂

α̂ 1

)
δ + k1 + α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k,

and in an equilibrium in which p1 > p2 the last term simplifies to a singleton:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k =

{
α̂

1 + α̂

(
1
−1

)
k

}
.

In an equilibrium p in which p1 = p2, the last term can be written as:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k = α̂

1− α̂2

(
∂p1 |p1 − p2|+ α̂∂p2 |p2 − p1|
∂p2 |p2 − p1|+ α̂∂p1 |p1 − p2|

)
k.

In the potential maximizer p, we have that: ∂p1 |p1 − p2| = −∂p2 |p2 − p1|, and so the last term simplifies
to:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k = α̂

1 + α̂

(
1
−1

)
∂p1 |p1 − p2|k.

�
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Two-Type Network

We assume that there are two groups of players, A and B, such that: N = A ∪B, and A ∩B = ∅. We
let nG := |G|, G ∈ {A,B}, and G(`),−G(`) denote, respectively, the group of player ` and the other
group. Moreover, we assume that: δ` = δG(`), and

γ`k = γG(`)G(k), for all `, k ∈ N.

We note that, by our maintained assumptions: γAB = γBA, and: γGF = o(n), because nFγGF +
(nG − 1)γGG ≤ 1, for all G,F ∈ {A,B}, G 6= F .

The potential function is such that: G(i) = G(j) =⇒ v(x1, . . . xi, . . . xj , . . . xn) = v(x1, . . . xj , . . . xi, . . . xn),
so every equilibrium is represented by a pair (pA, pB), such that i ∈ A plays pA, and j ∈ B plays pB . We
let EχG(i) = Eχi in the potential maximizer p. We use αA := αγABnB

1−αγAA(nA−1) and αB := αγBAnA
1−αγBB(nB−1) .

We note that: αA ≤ αγABnB
αγABnB+αγAA(nA−1)−αγAA(nA−1) = 1, and, similarly, αB ≤ 1.

We note that αA+αB−2αAαB
1−αAαB ∈ [0, 1], because:

αA + αB − 2αAαB > 0 ⇐⇒ αA
1− αA

+ αB
1− αB

> 0,

and

αA + αB − 2αAαB
1− αAαB

= 1− (1− αA)(1− αB)
1− αAαB

.

Also, we note that ∂
∂αG(i)

αA+αB−2αAαB
1−αAαB =

(1−α−G(i)
1−αAαB

)2
.

Lemma 48. Let Γ be a two-type network, such that: βA ≥ βB, and let x0 ≥ βA+k−αA(1−αB) 1
1−αAαB k

and βB + k + αB(1− αA) 1
1−αAαB k ≥ Eχ(p).

(1) If βA−βB ≥ αA+αB−2αAαB
1−αAαB k, then pA ≤ pB in the unique interior potential maximizer. Moreover:

EχA = βA + k − αA(1− αB) 1
1− αAαB

k

EχB = βB + k + αB(1− αA) 1
1− αAαB

k,

which imply:

EχA − EχB = βA − βB −
αA + αB − 2αAαB

1− αAαN
k.

(2) If βA−βB < αA+αB−2αAαB
1−αAαB k, then pA = pB in the unique interior potential maximizer. Moreover:

EχA = βA + k − αA(1− αB)
1− αAαB

dk

EχB = βB + k + αB(1− αA)
1− αAαB

dk, d ∈ [0, 1].
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and βA − βB = αA+αB−2αAαB
1−αAαB dk, which imply:

EχA = αB(1− αA)βA + αA(1− αB)βB
αB(1− αA) + αA(1− αB) + k.

Proof. The superdifferential of Evi(χ1, . . . , χn) with respect to pi, i ∈ A, evaluated at an equilibrium, is:

2µ(1− α)δA − 2µEχi + 2µαγAA(nA − 1)EχA + 2µαγABnBEχB+
−ω + αγAA(nA − 1)ω + αγAB(nB)ω − αγAA(nA − 1)∂pi |pi − pA|ω − αγABnB∂pi |pi − pB|.

If p is the potential maximizer, then: pi = pG(i), and:

0 ∈ 2µ(1− α)δA − 2µEχA + 2µαγAA(nA − 1)EχA + 2µαγABnBEχB+
− ω + αγAA(nA − 1)ω + αγAB(nB)ω − αγABnB∂pA |pA − pB|

0 ∈ 2µ(1− α)δB − 2µEχB + 2µαγBB(nB − 1)EχB + 2µαγBAnAEχA+
− ω + αγBB(nB − 1)ω + αγBA(nA)ω − αγBAnA∂pB |pB − pA|.

We use αA := αγABnB
1−αγAA(nA−1) and αB := αγBAnA

1−αγBB(nB−1) . We note that: αA ≤ αγABnB
αγABnB+αγAA(nA−1)−αγAA(nA−1) =

1, and, similarly, αB ≤ 1. Thus, if p is the potential maximizer, then pi = pG(i), and, for some
d ∈ ∂pA |pA − pB|:

0 = 2µ(1− α)
( δA

1−αγAA(nA−1)
δB

1−αγBB(nB−1)

)
− 2µ

(
1 −α1
−α2 1

)(
EχA
EχB

)
−
(

1 −α1
−α2 1

)
1ω +

(
αA
−αB

)
ωd.

Thus, p ∈ (p0, p)n is the unique potential maximizer if, and only if: pi = pG(i), i ∈ N , and:

(
EχA
EχB

)
=
(
βA
βB

)
+ k1 +

(
1 −αA
−αB 1

)−1(
−αA
αB

)
kd, d ∈ ∂pA |pA − pB|.

In the unique potential maximizer for pA < pB, we have:(
1 −αA
−αB 1

)−1(
−αA
αB

)
kd = 1

1− αAαB

(
−(1− αB)αA
(1− αA)αB

)
k,

and:

EχA − EχB = βA − βB −
αA + αB − 2αAαB

1− αAαB
k.

�
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