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Free damaging and replication

Several goods exhibit:
1. Free replication;
2. Free damaging.

taste heterogeneity

This paper studies monopoly provision of goods whose production
structure exhibits free replication and free damaging.

Examples of digital goods:
1. Software goods;
2. Digital audio content;
3. Data.
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Plan

1. Model;
2. Efficiency benchmark;
3. Monopoly allocation and inefficiencies;
4. No-damaging constraint, extensions, and interpretations.
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Model



Model
A unit mass of buyers, each drawing a type θ ∈ [0, 1] = Θ, interacts with
a seller.

Type θ is privately informed about θ ∼ F , for twice diff. F on (0, 1);
↪→ F is regular in these slides, E{·} refers to the r.v. θ.

Type θ has payoff from quality q ∈ R+ and transfer t ∈ R:

g(q) + θq︸ ︷︷ ︸
utility u(q, θ)

−t,

for a strictly concave, increasing, and twice diff. g with g(0) = 0.

An allocation is a measurable q : Θ→ R+;

The cost of allocation q is

C (q) = c(sup q(Θ)),

for a production cost c : R→ R, increasing, strictly convex, twice
diff., with c ′(0) = 0, and limq→∞ c ′(q) =∞.
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Type θ has payoff from quality q ∈ R+ and transfer t ∈ R:

g(q) + θq︸ ︷︷ ︸
utility u(q, θ)

−t,

for a strictly concave, increasing, and twice diff. g with g(0) = 0.

An allocation is a measurable q : Θ→ R+;

With separable costs, the cost of q is

C (q) = E{k(q(θ))},

for some k (Mussa-Rosen ’78.)
white
white
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Efficiency



Efficiency

The surplus induced by allocation q is

E{u(q(θ), θ)} − c(sup q(Θ)).

The efficient allocation q? maximizes surplus.

Proposition 1
The efficient allocation is given by q?(θ) = q? for all θ, in which q? is the
unique quality q such that

g ′(q) + E{θ} = c ′(q).
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Efficiency

c ′(q?)

q?

q

(c ′)−1 (U ′)−1

1

q?

θ

q

q?

Define U(q) = g(q) + {θ}q.
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Monopoly

The monopolist problem is:

(PM) V (q) := max
q, t(·)

∫
Θ

t(θ) dF (θ)− c(sup q(Θ)) subject to:

q(θ) ≤ q, q nondecreasing.

u(q(θ), θ)− t(θ) ≥ u(q(θ̂), θ)− t(θ̂), for all (θ, θ̂),

u(q(θ), θ)− t(θ) ≥ 0, for all θ.

I The monopolist allocation qM solves PM for some t(·).

I Without separable costs: the monopolist problem cannot be solved
via “pointwise maximization”.
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Monopoly

The q constrained problem and its value V (q) are:

(P(q)) V (q) := max
q, t(·)

∫
Θ

t(θ) dF (θ)−((((((hhhhhhc(sup q(Θ)) subject to:

q(θ) ≤ q, for all θ, q nondecreasing.

u(q(θ), θ)− t(θ) ≥ u(q(θ̂), θ)− t(θ̂), for all (θ, θ̂),

u(q(θ), θ)− t(θ) ≥ 0, for all θ.

Lemma 1 (Invest then distribute)
The allocation q solves PM if and only if:
1. q solves P(qM),
2. qM solves maxq V (q)− c(q).
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Monopoly

The q constrained problem and its value V (q) are:

(P(q)) V (q) := max
q

∫
[0,1]

g(q(θ)) + ϕ(θ)q(θ)︸ ︷︷ ︸
Virtual surplus

dF (θ) subject to:

q(θ) ≤ q, for all θ,
q is nondecreasing;

in which ϕ(θ) := θ − 1−F (θ)
F ′(θ) .

Lemma 1 (Invest then distribute)
The allocation q solves PM if and only if:
1. q solves P(qM),
2. qM solves maxq V (q)− c(q).
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Virtual surplus maximization

The virtual-surplus maximizer

β(θ) ∈ Argmax
q

g(q) + ϕ(θ)q

is such that:
1. β(θ) =∞ if θ ≥ ϕ−1(0);
2. β is increasing;
3. β(0) > 0 (“Inada” g).

ϕ−1(0) 1

β(0)

∞

θ

β

8 / 22



Virtual surplus maximization

The virtual-surplus maximizer

β(θ) ∈ Argmax
q

g(q) + ϕ(θ)q

is such that:
1. β(θ) =∞ if θ ≥ ϕ−1(0);
2. β is increasing;
3. β(0) > 0 (“Inada” g).

b is the inverse of β.

b(q) ϕ−1(0) 1

β(0)

q

∞

θ

β
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Virtual surplus maximization

Lemma 2
Allocation q solves P(q) iff:

q(θ) = min{β(θ), q}, for all θ.

b(q) ϕ−1(0) 1

β(0)

q

∞

θ

β q
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Virtual surplus maximization

Lemma 2
Allocation q solves P(q) iff:

q(θ) = min{β(θ), q}, for all θ.

Distributive properties of qM :
1. Bunching at the top;
2. Distributional inefficiency

at the bottom or full
bunching;

3. No exclusion (if qM > 0.)

b(qM) ϕ−1(0) 1

β(0)

qM

∞

θ

β qM
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Linear preferences

Distributive properties if
g(q) = 0:
1. Bunching at the top;

β(θ) =∞ for θ ≥ ϕ−1(0)

2. Exclusion at the bottom;
β(θ) = 0 for θ < ϕ−1(0)

=⇒ single version.
Richness in digital markets is
due solely to preferences.

ϕ−1(0) 1

qM

∞

θ

β qM
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The monopolist allocation

c ′(qM) c ′(q?)

qM

q?

q

(c ′)−1 (V ′)−1

b(qM) ϕ−1(0) 1

β(0)

qM

q?

∞

θ

β qM
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Marginal revenues
V ′(q) is the marginal return from increasing the cap of the q-constrained
allocation θ 7→ min{β(θ), q}:

V ′(q) = (1− F (b(q)))︸ ︷︷ ︸
bunched types

(g ′(q) + b(q))︸ ︷︷ ︸
uq of b(q)

.

The change from q to q + ε
leads to:
1. same revenues from q′ < q:

q′ sold to the same θ, and
θ gets the same rent;

2. higher quality for bunched
types;

3. higher price by uq(q, b(q)).

b(q) ϕ−1(0) 1

β(0)

q
q + ε

∞

θ

q
β

θ 7→ min{β(θ), q}
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V ′(q) is the marginal return from increasing the cap of the q-constrained
allocation θ 7→ min{β(θ), q}:

V ′(q) = (1− F (b(q)))︸ ︷︷ ︸
bunched types

(g ′(q) + b(q))︸ ︷︷ ︸
uq of b(q)

.

1. By Markov’s inequality:

(1− F (b(q)))b(q) ≤ E{θ};

2. By the distributive
properties

b(q) < 1,

So:

V ′(q) < g ′(q) + E{θ}.
b(q) ϕ−1(0) 1

β(0)

q
q + ε

∞

θ

q
β

θ 7→ min{β(θ), q}
θ 7→ min{β(θ), q + ε}
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Productive inefficiency

c ′(qM) c ′(q?)

qM

q?

q

(c ′)−1 (U ′)−1 (V ′)−1

b(qM) ϕ−1(0) 1

β(0)

qM

q?

∞

θ

β qM q?
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Productive inefficiency

Proposition 2
The monopolist allocation is given by
qM(θ) = min{β(θ), q} for all θ, in
which qM is the unique q solving

V ′(q) = c ′(q).

Moreover, it holds that: qM < q?.

b(qM) ϕ−1(0) 1

β(0)

qM

q?

∞

θ

β qM q?
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Non-regular distribution

∂+V (q̂) c ′(q̂) ∂−V (q̂)

q̂

q
x 7→ (∂V )−1({x})

(c ′)−1

I β is ironed to obtain β;
I By Lemma 1,
θ 7→ min{β(θ), q} solves P(q);

I If types in (θ′, θ′′) are bunched
“at” q̂ ∈ (0, q),

∂−V (q̂) > ∂+V (q̂),

the extra revenues from q̂ + ε
come from types higher than θ′′.

V is concave by concavity of u in q, and productive inefficiency holds.

Proposition 3
Without regularity, the monopolist allocation is qM(θ) = min{β(θ), qM},
in which qM is the unique q with c ′(q) ∈ ∂V (q). Moreover, it holds that
qM < q?.
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No damaging constraint



No damaging
Without damaging, the q constrained problem is:

VN(q) := max
q, t(·)

∫
Θ

t(θ) dF (θ) subject to:

IC, IR, q(θ) ∈ {0, q}, for all θ.

The constraint is irrele-
vant under:
1. Full bunching by qM ;
2. Linear preferences.

The monopolist chooses a marginally excluded type n(q), so

V ′N(q) = (1− F (n(q)))(g ′(q) + n(q)), for g(q) + ϕ(n(q))q = 0.
(Recall: V ′(q) = (1− F (b(q)))(g ′(q) + b(q)), for g ′(q) + ϕ(b(q)) = 0.)

I Intuitively: damaging ban =⇒ n(q) ≤ b(q), strictly if b(q) > 0,
I so productive inefficiency is worse:

V ′N(q)− V ′(q) =

∫
[n(q),b(q)]

(1− F (θ))(g ′(q) + θ) dθ ≥ 0,

strictly if b(q) > 0.
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No damaging

The no-damaging allocation
qN features:
I Less production;
I No damaging;
I (Possibility of) exclusion.

The welfare comparison is
type specific and ambiguous.

n(qN) ϕ−1(0) 1

β(0)

qN
qM

q?

∞

b(qM)

θ

β

qM

qN

Proposition 4
Without damaging, the monopolist allocation is qN(θ) = 1[bN (qN ),1](θ)qN ,
in which qN is the unique q solving V ′N(q) = c ′(q). Moreover, we have
qN ≤ qM , strictly if b(qM) > 0.
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Separable costs



Cost interpretation

For separable costs: ΠM-R(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
per-agent revenues

−
∫

Θ

k(q(θ)) dF (θ)︸ ︷︷ ︸
per-agent costs

,

1. Payment t(θ) and production cost k(q(θ)) are comparable;
2. Population size only scales profits;

For digital goods: Π(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
per-agent revenues

− c(sup q(Θ))︸ ︷︷ ︸
per-agent unit cost

,

1. Payment t(θ) and production cost c(qM) have different size;
(Shapiro and Varian, 1998)

2. Population size impacts qM ;

In general: C (q) =
∫

Θ
k(q(θ)) dF (θ) + c(sup q(Θ)).

17 / 22



Cost interpretation

For separable costs: ΠM-R(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
per-agent revenues

−
∫

Θ

k(q(θ)) dF (θ)︸ ︷︷ ︸
per-agent costs

,

1. Payment t(θ) and production cost k(q(θ)) are comparable;
2. Population size only scales profits;

For digital goods: Π(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
per-agent revenues

− c(sup q(Θ))︸ ︷︷ ︸
per-agent unit cost

,

1. Payment t(θ) and production cost c(qM) have different size;
(Shapiro and Varian, 1998)

2. Population size impacts qM ;

In general: C (q) =
∫

Θ
k(q(θ)) dF (θ) + c(sup q(Θ)).

17 / 22



Cost interpretation

For separable costs: ΠM-R(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
per-agent revenues

−
∫

Θ

k(q(θ)) dF (θ)︸ ︷︷ ︸
per-agent costs

,

1. Payment t(θ) and production cost k(q(θ)) are comparable;
2. Population size only scales profits;

For digital goods: Π(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
per-agent revenues

− c(sup q(Θ))︸ ︷︷ ︸
per-agent unit cost

,

1. Payment t(θ) and production cost c(qM) have different size;
(Shapiro and Varian, 1998)

2. Population size impacts qM ;

In general: C (q) =
∫

Θ
k(q(θ)) dF (θ) + c(sup q(Θ)).
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Population size

c ′(qM)

qM

qM

↑ Pop.

(c ′)−1 (c ′)−1 (V ′)−1

ϕ−1(0) 1

β(0)

qM

qM

∞

θ

β qM qM
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Separable interpretation

For a separable interpretation (with a continuum of buyers:)

Π(q) =

∫
Θ

t(θ)− c(sup q(Θ))︸ ︷︷ ︸
same magnitude

as t(θ)

dF (θ),

under which production exhibits:
1. costly replication;
2. free damaging;
3. infeasibility of directly producing q′ < sup q(Θ).

In the damaged-goods model of Deneckere and McAfee (1996):
1. Quality space is {0, L,H}.
2. Costs are separable production & damaging costs k , with

k(H) < k(L);
3. Sufficient conditions for no-damaging qN to be Pareto worse than qM .
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Single buyer

ΠM-R(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
expected revenues

−
∫

Θ

c(q(θ)) dF (θ)︸ ︷︷ ︸
expected costs

,

1. Payment t(θ) and production cost c(q(θ)) are comparable;
2. Production occurs after eliciting the buyer’s type;
3. Free damaging and replication are irrelevant.

Π(q) =

∫
Θ

t(θ) dF (θ)︸ ︷︷ ︸
expected revenues

− c(sup q(Θ))︸ ︷︷ ︸
costs

.

1. Payment t(θ) and production cost c(sup q(Θ)) are comparable;
2. Production occurs before eliciting the buyer’s type;
3. Free damanging matters, replication is irrelevant.
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Single buyer

ϕ−1(0) 1

β(0)

qM

q?

qM-R(0) θ

q qM

q?

qEFF

qM-R

ΠM-R(qM-R)− Π(qM) = gains from “interim” damaging wrt ex-ante
damaging.

21 / 22



Single buyer

ϕ−1(0) 1

β(0)

qM

q?

qM-R(0) θ

q qM

q?

qEFF

qM-R

ΠM-R(qM-R)− Π(qM) = gains from “interim” damaging wrt ex-ante
damaging.

21 / 22



Conclusion

1. Digital goods: two interdependent inefficiencies arise: productive
and damaging.

2. The efficiency at the top insight is revisited:
‘distributional efficiency for high types.’

3. The profit expression admits other interpretations:∫
Θ

t(θ) dF (θ)− c(sup q(Θ))︸ ︷︷ ︸
Magnitude gap

v.
∫

Θ

t(θ)− c(sup q(Θ)) dF (θ)︸ ︷︷ ︸
Costly replication

.

I Free-replication–and-damaging technology for mass of buyers;
(plus a timing mismatch for a single buyer;)

I Costly-replication technology for mass of buyers.
4. The results extend to: C (q) = c(sup q(Θ)) +

∫
Θ
k(q(θ)) dF (θ),

increasing-differences u (damaging costs), and nonregular F .

Thanks!
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Monopolistic screening
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Costs are separable.

Damaged goods
Deneckere and McAfee (1996); Grubb (2009); Corrao, Flynn, and Sastry (2023).

Costs are separable, and consumers can damage the good.

Pricing of information with buyer’s private information
Bergemann, Bonatti, and Smolin (2018); Bergemann and Ottaviani (2021);
Yang (2022); Bergemann, Cai, Velegkas, and Zhao (2022); Rodríguez Olivera
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Bergemann, Heumann, and Morris (2025); Mensch and Ravid (2025); Thereze
(2025).



Hybrid costs

With more general costs: C (q) =
∫

Θ
ĉ(q(θ), sup q(Θ)) dF (θ),

the seller pays:
1. Development / production costs: sup q(Θ);
2. Distribution / replication / damaging costs: q(θ).

Lemma 1 holds, but the characterization of qM has two complications:
1. Distribution: the solution to P(q) does not depends on q solely

through capping;
2. Production: the marginal return V ′(q) depends on: (i) bunching

region, and (ii) damaging.

If C (q) = c(sup q(Θ)) + κ log
(

sup q(Θ)
q(θ)

)
, then 1. is turned off.
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Damaging costs

If C (q) = c(sup q(Θ)) + κ log
(

sup q(Θ)
q(θ)

)
, then:

I Production costs + pure-damaging replication / distribution costs;

I The efficient allocation is flat: damaging decreases utility and
increases costs;

I The solution to P(q) is θ 7→ min{βκ(θ), q}.

1. κ > 0 acts as a preference shift (↑ g) at the distribution stage:
I ↑ βκ and ↓ bκ(q);

2. κ > 0 impacts production directly:
I V ′(q) = (1− F (bκ(q))(g ′(q) + bκ(q))− κ bκ(q)

q .
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Damaging costs

κ > 0 implies
1. Less damaging;
2. Lower production.
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Efficiency with general u and k

Proposition 5
The allocation q? is efficient iff q?(θ) = min{γ(θ), q?} for all θ, in which:
q? is the unique q such that

∫
[a(q),1]

u1(q, θ)− k ′(q) dF (θ) = c ′(q), and γ

is an allocation such that γ(θ) = α(θ) almost everywhere.

In general, q ∈ [0, q], and:

J(q, θ) := u(q, θ)−
1

h(θ)
u2(q, θ)− k(q),

β(θ) is the largest element of

Argmax
q

J(q, θ),

α(θ) is the largest element of

Argmax
q

u(q, θ)− k(q),

u and J satisfy incr. differences, and
are: twice diff., concave in q for all θ,
str. quasiconcave in q a.e. on Θ; k is
Inada.

β(0)

qM

q?

∞

θ

β α qM q?



Monopoly with general u and k
Proposition 6
The allocation qM is monopolist iff qM(θ) = min{γ(θ), qM} for all θ, in
which: qM is the unique q such that

∫
[b(q),1]

J1(q, θ) dF (θ) = c ′(q), and γ

is a nondecreasing allocation such that γ(θ) = β(θ) almost everywhere.
Moreover, 0 < qM < q?.

In general, q ∈ [0, q], and:

J(q, θ) := u(q, θ)−
1

h(θ)
u2(q, θ)− k(q),

β(θ) is the largest element of

Argmax
q

J(q, θ),

α(θ) is the largest element of

Argmax
q

u(q, θ)− k(q),

u and J satisfy incr. differences, and
are: twice diff., concave in q for all θ,
str. quasiconcave in q a.e. on Θ; k is
Inada.

β(0)

qM

q?

∞

θ

β α qM q?



No-damaging monopoly with general u and k

Assumption: J(0, θ) = 0 for all θ and J(q, ·) is increasing for all q > 0.

Proposition 7
The allocation qN is no screening iff qN(θ) = [θ ≥ bN(qN)]qN for all
θ 6= bN(qN) and qN(bN(qN)) ∈ {0, qN}, in which qN is the unique q such
that:

∫
[bN (q),1]

J1(q, θ) dF (θ) = c ′(q). Moreover, it holds that:

1. 0 < qN ≤ qM ;
2. qN < qM if b(qM) > bN(qM).

We use Iverson brackets: [P] = 1 if P is true, and [P] = 0 otherwise.



Productive inefficiency addendum 1/3
Productive inefficiency arises if:

V ′(q)︸ ︷︷ ︸
Marginal revenues

given θ 7→ min{β(θ), q}

< g ′(q) + E{θ}︸ ︷︷ ︸
Marginal total utility

given θ 7→ q

.

1. The q constrained allocation θ 7→ min{β(θ), q} induces total utility

U(q) := E{u(min{β(θ), q}, θ)};

2. U ′(q) < marginal total utility given θ 7→ q, because

U ′(q) =

∫
[b(q),1]

g ′(q) + θ dF (θ) ≤ g ′(q) + E{θ};

3. It holds that

V ′(q) < V ′(q) + Rents′(q) = U ′(q).
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Productive inefficiency addendum 2/3

Productive inefficiency arises because:

V ′(q) < g ′(q) + E{θ}.

The monopoly that produces quality q implies total surplus

V (q) + U(q)− c(q),

with U(q) =
∫

[0,1]

∫
[0,θ]

min{β(θ′), q} dθ′ dF (θ) (Envelope Theorem).

The marginal surplus is V ′(q) + U ′(q) and satisfies

V ′(q) < V ′(q) + U ′(q) ≤ g ′(q) + E{θ}.

1. Monopolist does not internalize buyer surplus;
2. Damaging inefficiency.
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Productive inefficiency addendum 3/3

WTS: V ′(q) + U ′(q) ≤ g ′(q) + E{θ}.

1. U ′(q) =
∫

[b(q),1]
θ − b(q) dF (θ),

because the marginal u(q(θ), θ) increases at rate g ′(q) + θ and the
marginal transfer at rate g ′(q) + b(q), for θ > b(q) and
q(·) = min{β(·), q};

2. Using V ′(q) = (1− F (b(q)))(g ′(q) + b(q)), we have

V ′(q) + U ′(q) = (1− F (b(q)))g ′(q) +

∫
[b(q),1]

θ dF (θ).

Note that U ′(q) > 0 for all q > 0, because b(q) ≤ ϕ−1(0) < 1 for all
q ≥ 0.)
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Competition

The game among N firms has two stages:
1. Every firm i simultaneously chooses a quality qi .
2. Every firm i , observing all stage-1 qualities, simultaneously chooses a

pricing function pi : R+ → R, with pi (q) =∞ if q > qi .

Then: each type buys a good from a firm i , or does not buy any good for
a payoff of 0.

Firms play a subgame-perfect Nash equilibrium.

Definition 1
An n equilibrium is an equilibrium in which exactly n firms are active; an n
equilibrium is symmetric if active firms play the same strategy.



The game

Type θ buys quality Dp(θ) from firm ιp(θ), given the pricing functions in
(p1, . . . , pN) = p.

The revenues of i given the pricing functions in (p1, . . . , pN) = p are

Ri (p1, . . . , pN) :=

∫
{θ|ιp(θ)=i}

pi (Dp(θ)) dF (θ).

The set of strategies for firm i is Si := Q × Pi , letting Pi ⊆ (RQ)Q
N

be
the set of “conditional” pricing functions of firm i .

The payoff of firm i from the profile s := (. . . , (qsi ,P
s
i ), . . . ) ∈ ×N

i=1Si is

Πi (s) := Ri (P
s
1[qs ], . . . ,Ps

N [qs ])− c(qsi ).



Competitive allocations
Let’s order qualities (q1, . . . , qN) so that: x > y > · · ·

Every quality below y comes at zero price.

b(y)b(x) ϕ−1(0) 1

y

x

qM

q?

b(qM)

β(0) θ

β

qM

q[x , y ]
q?



Competitive equilibria

Lemma 3
In any pure-strategy equilibrium: one firm produces qM and other firms are
idle.

=⇒ Every symmetric n equilibrium is mixed if n ≥ 2 (competitive.)

Proposition 8

1. For all n ≤ N, there exists a symmetric n equilibrium.
2. Every symmetric and competitive n equilibrium induces the random

allocation q[x̂ , ŷ ], letting x̂ and ŷ be, resp., the first and second order
statistics of the n i.i.d. draws [0, qM ] with CDF

Hn(q) = n−1

√
c ′(q)

V ′(q)
.



Properties of competitive equilibria

Corollary 1
Every symmetric competitive equilibrium leads to an allocation such that,
with probability one:
1. The lowest quality is positive and free;
2. The highest quality is strictly lower than qM .

In the paper:
1. Equilibrium welfare with n ≥ 2 active firms decreases in n.
2. Monopoly dominates duopoly if monopoly fully bunches.
3. Duopoly dominates monopoly if: full bunching does not occur and

costs are approximately fixed.
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